P3371 【模板】单源最短路径(弱化版)

【模板】单源最短路径(弱化版)

题目背景

本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779

题目描述

如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入格式

第一行包含三个整数 n , m , s n,m,s n,m,s,分别表示点的个数、有向边的个数、出发点的编号。

接下来 m m m 行每行包含三个整数 u , v , w u,v,w u,v,w,表示一条 u → v u \to v uv 的,长度为 w w w 的边。

输出格式

输出一行 n n n 个整数,第 i i i 个表示 s s s 到第 i i i 个点的最短路径,若不能到达则输出 2 31 − 1 2^{31}-1 2311

样例 #1

样例输入 #1

4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4

样例输出 #1

0 2 4 3

提示

【数据范围】
对于 20 % 20\% 20% 的数据: 1 ≤ n ≤ 5 1\le n \le 5 1n5 1 ≤ m ≤ 15 1\le m \le 15 1m15
对于 40 % 40\% 40% 的数据: 1 ≤ n ≤ 100 1\le n \le 100 1n100 1 ≤ m ≤ 1 0 4 1\le m \le 10^4 1m104
对于 70 % 70\% 70% 的数据: 1 ≤ n ≤ 1000 1\le n \le 1000 1n1000 1 ≤ m ≤ 1 0 5 1\le m \le 10^5 1m105
对于 100 % 100\% 100% 的数据: 1 ≤ n ≤ 1 0 4 1 \le n \le 10^4 1n104 1 ≤ m ≤ 5 × 1 0 5 1\le m \le 5\times 10^5 1m5×105 1 ≤ u , v ≤ n 1\le u,v\le n 1u,vn w ≥ 0 w\ge 0 w0 ∑ w < 2 31 \sum w< 2^{31} w<231,保证数据随机。

Update 2022/07/29:两个点之间可能有多条边,敬请注意。

对于真正 100 % 100\% 100% 的数据,请移步 P4779。请注意,该题与本题数据范围略有不同。

样例说明:

图片1到3和1到4的文字位置调换

#include<iostream>
#include<cstring>
#include<vector> 
#include<cmath>
using namespace std;
const int N=100010;
int d[N]; 
bool st[N];
struct vec{
	int b;
	int w;
};
int n,m,s;
vector<vec> h[N]; 

void dijkstra(int s){
	d[s]=0;
	for(int i=1;i<=n;i++){
		int t=0;
		for(int j=1;j<=n;j++){
			if(!st[j]&&d[j]<d[t])t=j;
		}
		
		st[t]=true;
		for(auto &item:h[t]){
			int b=item.b;
			int w=item.w;
			d[b]=min(d[b],d[t]+w);
	
		}
	}
	
}

int main() {
	long long mat=pow(2,31)-1;
	memset(d,0x3f,sizeof d);
	cin>>n>>m>>s;
	while(m--){
		int u,v,w;cin>>u>>v>>w;
		h[u].push_back({v,w}); 
	}
	dijkstra(s);
	
	for(int i=1;i<=n;i++){
		if(d[i]==0x3f3f3f3f)cout<<mat<<" ";
		else cout<<d[i]<<" "; 
	}
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值