【模板】单源最短路径(弱化版)
题目背景
本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779。
题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。
输入格式
第一行包含三个整数 n , m , s n,m,s n,m,s,分别表示点的个数、有向边的个数、出发点的编号。
接下来 m m m 行每行包含三个整数 u , v , w u,v,w u,v,w,表示一条 u → v u \to v u→v 的,长度为 w w w 的边。
输出格式
输出一行 n n n 个整数,第 i i i 个表示 s s s 到第 i i i 个点的最短路径,若不能到达则输出 2 31 − 1 2^{31}-1 231−1。
样例 #1
样例输入 #1
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
样例输出 #1
0 2 4 3
提示
【数据范围】
对于
20
%
20\%
20% 的数据:
1
≤
n
≤
5
1\le n \le 5
1≤n≤5,
1
≤
m
≤
15
1\le m \le 15
1≤m≤15;
对于
40
%
40\%
40% 的数据:
1
≤
n
≤
100
1\le n \le 100
1≤n≤100,
1
≤
m
≤
1
0
4
1\le m \le 10^4
1≤m≤104;
对于
70
%
70\%
70% 的数据:
1
≤
n
≤
1000
1\le n \le 1000
1≤n≤1000,
1
≤
m
≤
1
0
5
1\le m \le 10^5
1≤m≤105;
对于
100
%
100\%
100% 的数据:
1
≤
n
≤
1
0
4
1 \le n \le 10^4
1≤n≤104,
1
≤
m
≤
5
×
1
0
5
1\le m \le 5\times 10^5
1≤m≤5×105,
1
≤
u
,
v
≤
n
1\le u,v\le n
1≤u,v≤n,
w
≥
0
w\ge 0
w≥0,
∑
w
<
2
31
\sum w< 2^{31}
∑w<231,保证数据随机。
Update 2022/07/29:两个点之间可能有多条边,敬请注意。
对于真正 100 % 100\% 100% 的数据,请移步 P4779。请注意,该题与本题数据范围略有不同。
样例说明:
图片1到3和1到4的文字位置调换
#include<iostream>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
const int N=100010;
int d[N];
bool st[N];
struct vec{
int b;
int w;
};
int n,m,s;
vector<vec> h[N];
void dijkstra(int s){
d[s]=0;
for(int i=1;i<=n;i++){
int t=0;
for(int j=1;j<=n;j++){
if(!st[j]&&d[j]<d[t])t=j;
}
st[t]=true;
for(auto &item:h[t]){
int b=item.b;
int w=item.w;
d[b]=min(d[b],d[t]+w);
}
}
}
int main() {
long long mat=pow(2,31)-1;
memset(d,0x3f,sizeof d);
cin>>n>>m>>s;
while(m--){
int u,v,w;cin>>u>>v>>w;
h[u].push_back({v,w});
}
dijkstra(s);
for(int i=1;i<=n;i++){
if(d[i]==0x3f3f3f3f)cout<<mat<<" ";
else cout<<d[i]<<" ";
}
}