洛谷 P3371 【模板SPFA】单源最短路径

本文详细介绍了SPFA算法,并通过一个具体问题实例演示如何使用SPFA算法来求解有向图中从某一节点到所有节点的最短路径。文章还提供了一个标准的SPFA算法实现示例。
摘要由CSDN通过智能技术生成

题目

如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

题解

spfa跑一遍,然后输出
做错的原因主要在于对spfa的不熟悉
这里放一个标准spfa(储存格式为链表)

链表例子:

 数据 x y w//从x到y要w
      1 2 2
      2 3 2
      2 4 1
      1 3 5
      3 4 3
      1 4 4

ls   1   2   3   4   5  //点1——5
     4   3   5   4   0  //点i最后一次在g中的位置
 g   1   2   3   4   5   6  //6条边
   x 1   2   2   1   3   1
   y 2   3   4   3   4   4
   w 2   2   1   5   3   4
next 0   0   2   1   0   0  //点i上一次在g中的位置
procedure spfa;
var
  head,tail,t:longint;
begin
  head:=0; tail:=1;
  list[1]:=1;//起始点入队
  v[1]:=1;   //初始时把起始点先放进队列里
  while head<>tail do//与广搜类似
    begin
      head:=head+1;
      t:=ls[list[head]];
      while t>0 do
        with g[t] do//记录类型,下面的程序里x=g[t].x,y=g[t].y,w=g[t].w
          begin
            if d[x]+w<d[y] then  //松弛操作
              begin
                d[y]:=d[x]+w;
                if v[y]=0 then //新的点未松弛但被更新了d值
                  begin
                    v[y]:=1;//入队
                    tail:=tail+1;//尾指针加一
                    list[tail]:=y;//入队
                  end;
              end;
            t:=next;
          end;
      v[list[head]]:=0;//该点移出队列
    end;
end;

代码

type
  rec=record
        x,y,w,ne:longint;
      end;
var
  n,m,s,i,j:longint;
  a:array[1..500000]of rec;
  d,ls,v:array[0..10000]of longint;
  state:array[1..500000]of longint;

procedure spfa;
var
  h,t,i,x,y,w,ne:longint;
begin
  h:=0;t:=1;
  d[s]:=0;state[1]:=s;v[s]:=1;
  while h<t do
    begin
      inc(h);
      i:=ls[state[h]];
      while i>0 do
        begin
          x:=a[i].x;y:=a[i].y;w:=a[i].w;ne:=a[i].ne;
          if d[x]+w<d[y] then
            begin
              d[y]:=d[x]+w;
              if v[y]=0 then
                begin
                  v[y]:=1;
                  inc(t);
                  state[t]:=y;
                end;
            end;
          i:=ne;
        end;
      v[state[h]]:=0;
    end;
end;

begin
  readln(n,m,s);
  for i:=1 to m do
    begin
      readln(a[i].x,a[i].y,a[i].w);
      a[i].ne:=ls[a[i].x];
      ls[a[i].x]:=i;
    end;
  fillchar(d,sizeof(d),$7f);
  spfa;
  for i:=1 to n do
    if d[i]=d[0] then write('2147483647 ') else
          if i=s then write('0 ')
                 else write(d[i],' ');
end.
### 关于洛谷平台上的链式前向星模板洛谷平台上,确实存在一些经典的链式前向星模板供学习者练习。其中较为典型的目之一是 **P3371模板单源最短路径**[^2]。此不仅涉及链式前向星的构建方法,还结合了 SPFA 或 Dijkstra 堆优化算法来求解图中的最短路径。 #### 目描述 该目要求处理一张带权有向图,并计算从指定起点到其他各点的最短距离。输入数据的第一行包含三个整数 N、M 和 S,分别代表点的数量、边的数量以及起始节点编号。随后 M 行每行给出一条边的信息,包括两个端点及其权重。 为了高效存储稀疏图结构并支持快速访问邻接表,在实现过程中通常采用链式前向星作为底层的数据结构[^1]。 以下是基于 C++ 的简代码框架用于演示如何利用链式前向星配合优先队列完成上述任务: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; struct Edge { int to, next, w; // 终点,下一条边的位置索引,边权值 } edge[MAXN << 1]; int head[MAXN], tot; long long dist[MAXN]; bool vis[MAXN]; void add_edge(int u, int v, int w){ edge[++tot].to = v; edge[tot].w = w; edge[tot].next = head[u]; head[u] = tot; } priority_queue<pair<long long,int>,vector<pair<long long,int>>,greater<>> pq; void dijkstra(int s){ memset(dist,0x3f,sizeof dist); dist[s]=0;pq.emplace(0,s); while(!pq.empty()){ auto [d,u]=pq.top();pq.pop(); if(vis[u]) continue; vis[u]=true; for(int i=head[u];i;i=edge[i].next){ int v=edge[i].to,w=edge[i].w; if(dist[v]>dist[u]+w){ dist[v]=dist[u]+w; pq.emplace(dist[v],v); } } } } ``` 以上程序片段展示了如何通过链式前向星建立图模型,并借助最小堆加速版Dijkstra算法解决问
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值