【题目描述】
一个数的序列bibi,当b1<b2<...<bSb1<b2<...<bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,...,aN)(a1,a2,...,aN),我们可以得到一些上升的子序列(ai1,ai2,...,aiK)(ai1,ai2,...,aiK),这里1<=i1<i2<...<iK<=N1<=i1<i2<...<iK<=N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中和最大为18,为子序列(1,3,5,9)的和。
你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。
【输入】
输入的第一行是序列的长度N(1<=N<=1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
【输出】
最大上升子序列和。
【输入样例】
7
1 7 3 5 9 4 8
【输出样例】
18
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1010,INF=2e9;
int a[N];
int f[N];
int main(){
int n;cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
int res=0;
for(int i=1;i<=n;i++){
f[i]=a[i];
for(int j=1;j<i;j++){
if(a[i]>a[j])f[i]=max(f[i],f[j]+a[i]);
}
res=max(res,f[i]);
}
cout<<res;
}