PyTorch中的 torchvision.transforms模块

简介:

这是PyTorch中的一个图像转换模块,任何图像增强或者归一化操作都需要用到此模块

1.torchvision.transforms.Compose(transforms)

作用
将几个transforms组合到一起

参数
Transform objects构成的列表,可以是:
a).torchvision.transforms的类对象,
b).也可以是自定义的类对象

2.torchvision.transforms.ToTensor

作用
将PIL读取的图像或者np.array (H * W * C) 格式的数据([0, 255])转换成torch.FloatTensor类型的 (C * H * W) 在([0.0, 1.0])范围内的数据

黄色线前提
a).PIL image属于(L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
b).np.array数据类型为dtype=np.uint8

其他情况下不会缩放到[0.0, 1.0]的范围

返回: Tensor

3.torchvision.transforms.Normalize(mean, std, inplace=False)

作用:
(标准化/归一化)一个tensor 类型的数据,归一化的均值和方差分别是:mean和std. 要给定每个通道的均值和方差(M1, M2, M3), (S1, S2, S3).
例如: input[channel] = (input[channel] - mean[channel]) / std[channel]

注意:默认情况下转换操作不是in_palce操作,一般配合**torchvision.transforms.ToTensor()**一起使用

返回: Tensor


会持续更新…

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值