前言:
在使用Pytorhch框架时总会看见在模型训练前会加上model.trian(), 而在模型测试或者验证之前则会加上model.eval(), 那这两者之间有什么区别了??
model.eval()
我们来看看官方的解释:由于在验证或者测试时,我们不需要模型中的某些层起作用(比如:Dropout层),也不希望某些层的参数被改变(i.e. BatchNorm的参数),这时就需要设置成**model.eval()**模式
model.train()
但是在训练模型的时候又希望这些层起作用,所以又要重新将这些层设置回来,这时候就需要用到**model.train()**模式
torch.grad()
在模型测试或者验证时还需要使用到一个函数:torch.grad()。
作用:
禁用梯度计算的上下文管理器。
解释:
当在模型推断(val/test)时,我们不会调用反向传播。这时禁止计算梯度, 它将减少原本需要require_grad = True的计算的内存消耗。在这种模式下,即使输入具有require_grad = True,每次计算的结果也将具有require_grad = False。
代码示例:
>>> x = torch.tensor([1], requires_grad=True)
>>> with torch.no_grad():
... y = x * 2
>>> y.requires_grad
False
>>> @torch.no_grad() #用作装饰器
... def doubler(x):
... return x * 2
>>> z = doubler(x)
>>> z.requires_grad
False
torch.enable_grad()
作用:
与torch.grad()的作用相反,如果梯度计算torch.grad()或者torch.set_grad_enabled()禁止了, 使用torch.enable_grad()将会允许梯度计算的上下文管理器。
代码示例:
>>> x = torch.tensor([1], requires_grad=True)
>>> with torch.no_grad():
... with torch.enable_grad():
... y = x * 2
>>> y.requires_grad
True
>>> y.backward()
>>> x.grad
>>> @torch.enable_grad()
... def doubler(x):
... return x * 2
>>> with torch.no_grad():
... z = doubler(x)
>>> z.requires_grad
True