Pytorch中train和eval模式的区别

前言:

在使用Pytorhch框架时总会看见在模型训练前会加上model.trian(), 而在模型测试或者验证之前则会加上model.eval(), 那这两者之间有什么区别了??

model.eval()

我们来看看官方的解释:由于在验证或者测试时,我们不需要模型中的某些层起作用(比如:Dropout层),也不希望某些层的参数被改变(i.e. BatchNorm的参数),这时就需要设置成**model.eval()**模式

在这里插入图片描述

model.train()

但是在训练模型的时候又希望这些层起作用,所以又要重新将这些层设置回来,这时候就需要用到**model.train()**模式

torch.grad()

在模型测试或者验证时还需要使用到一个函数:torch.grad()。

作用:

禁用梯度计算的上下文管理器。

解释:

当在模型推断(val/test)时,我们不会调用反向传播。这时禁止计算梯度, 它将减少原本需要require_grad = True的计算的内存消耗。在这种模式下,即使输入具有require_grad = True,每次计算的结果也将具有require_grad = False。

代码示例:

>>> x = torch.tensor([1], requires_grad=True)
>>> with torch.no_grad():
...   y = x * 2
>>> y.requires_grad
False
>>> @torch.no_grad()  #用作装饰器
... def doubler(x):
...     return x * 2
>>> z = doubler(x)
>>> z.requires_grad
False

torch.enable_grad()

作用:

与torch.grad()的作用相反,如果梯度计算torch.grad()或者torch.set_grad_enabled()禁止了, 使用torch.enable_grad()将会允许梯度计算的上下文管理器。
代码示例:

>>> x = torch.tensor([1], requires_grad=True)
>>> with torch.no_grad():
...   with torch.enable_grad():
...     y = x * 2
>>> y.requires_grad
True
>>> y.backward()
>>> x.grad
>>> @torch.enable_grad()
... def doubler(x):
...     return x * 2
>>> with torch.no_grad():
...     z = doubler(x)
>>> z.requires_grad
True
PyTorch中,traineval是用于模型训练评估的两个不同模式train模式是用于模型的训练阶段,其目标是通过最小化损失函数来优化模型的参数。在train模式下,模型会对每一个训练样本进行前向传播计算,并计算损失值。然后通过反向传播算法,模型会根据损失值来更新参数,以减小损失函数的值。此外,在train模式下,通常会对模型进行数据增强操作,如随机旋转、平移等,以增加模型的泛化能力。 eval模式是用于模型的评估阶段,其目标是评估模型在测试集或验证集上的性能指标,例如准确率、精确率、召回率等。在eval模式下,模型只进行前向传播计算,不进行参数的更新操作。eval模式下的模型会使用测试集或验证集的数据来计算模型的预测结果,然后与真实标签进行比较,以评估模型的性能。 traineval模式在实现上有一些差异。在train模式下,模型会开启一些特定的操作,例如Batch NormalizationDropout等,以增加模型的泛化能力并减少过拟合。而在eval模式下,这些操作会被关闭或冻结,以确保模型的预测结果的稳定性可靠性。 traineval模式的差异也会导致在一些操作中的不同结果。例如,对于某些层(如Batch Normalization)来说,在train模式eval模式下输入的批次数据的均值方差计算方法是不同的,因此导致在eval模式下的结果与train模式下有一定的差异。 总而言之,traineval模式是模型训练评估过程中使用的不同模式,它们在操作上有所差异,使用不同的行为策略来达到各自的目标。了解traineval模式之间的差异,可以帮助我们更好地理解使用PyTorch进行模型训练评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值