题目
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ] 输出: 1 解释: 移除 [1,3] 后,剩下的区间没有重叠。 示例
2:输入: [ [1,2], [1,2], [1,2] ] 输出: 2 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。 示例 3:
输入: [ [1,2], [2,3] ] 输出: 0 解释: 你不需要移除任何区间,因为它们已经是无重叠的了
思路
这里按照哪个边界排序需要考虑一下:
- 如果是按照右边界排序,就要从左往右遍历,因为右边界越小越好,只要右边界越小,留给下一个区间的空间就越大,所以从左向右遍历,优先选右边界小的;
- 如果按照左边界排序,就要从右往左遍历,因为左边界数值越大(越靠右)越好,这样留给前一个区间的空间就越大,所以可以从右往左遍历
本题按照右边界来排序,从左向右记录非交叉区间的个数,最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了
此时问题就是要求非交叉区间的最大个数了
右边界区间排序后(就是按照右区间的值从小到大排序,不用考虑起始位置),
局部最优:优先选右区间小的区间,所以从左向右遍历,留个下一个区间的空间大一点,从而尽量避免交叉
全局最优:选取最多的非交叉区间
如图,区间1,2,3,4,5,6已经按照右边界排好序
- 每次取非交叉区间的时候,都是选择右边界最小的来做分割点,所以第一条分割线就是区间1结束的位置
- 接下来就是找大于区间1结束位置的区间,是从区间4开始;注意这里不是从区间5开始,因为已经是按照右边界排序的了,区间5其实是排在区间4后面的
- 区间4结束后,再找到区间6,所以一共非交叉区间是3个
- 最后总区间数为6,减去非交叉区间3个,移除区间的最小数量就是3
简单来说算法核心就是:先按照右边界排序,然后选右边界小的作为分割点,再继续从这个右边界开始的区间内选右边界最小的
java代码如下:
class Solution {
public int eraseOverlapIntervals(int[][] intervals) {
Arrays.sort(intervals, (a,b)-> {//按照右边界排序
return Integer.compare(a[1],b[1]);//如果写了代码块{}则需要return
});
int count = 1;//非交叉区间的个数
for(int i = 1; i < intervals.length; i++){
if(intervals[i][0] < intervals[i-1][1]){//如果当前区间的左边界小于上一个区间的右边界,说明有重叠,需要更新边界,继续找下一个右边界
intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);//选右边界小的为分割点
continue;
}else{
count++;
}
}
return intervals.length - count;
}
}