代码随想录贪心算法——无重叠区间

该博客讨论了一个计算机科学问题,即如何找到一个区间集合中需要移除的最小数量区间,以使剩余区间互不重叠。通过按照区间的右边界排序,从左向右遍历并选择非重叠区间,可以确定需要移除的区间数量。提供的Java代码实现了这一算法,通过比较相邻区间的边界来确定非交叉区间,并计算出移除的区间计数。
摘要由CSDN通过智能技术生成

题目

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。

示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ] 输出: 1 解释: 移除 [1,3] 后,剩下的区间没有重叠。 示例
2:

输入: [ [1,2], [1,2], [1,2] ] 输出: 2 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。 示例 3:

输入: [ [1,2], [2,3] ] 输出: 0 解释: 你不需要移除任何区间,因为它们已经是无重叠的了

思路

这里按照哪个边界排序需要考虑一下:

  • 如果是按照右边界排序,就要从左往右遍历,因为右边界越小越好,只要右边界越小,留给下一个区间的空间就越大,所以从左向右遍历,优先选右边界小的;
  • 如果按照左边界排序,就要从右往左遍历,因为左边界数值越大(越靠右)越好,这样留给前一个区间的空间就越大,所以可以从右往左遍历

本题按照右边界来排序,从左向右记录非交叉区间的个数,最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了

此时问题就是要求非交叉区间的最大个数了

右边界区间排序后(就是按照右区间的值从小到大排序,不用考虑起始位置),
局部最优:优先选右区间小的区间,所以从左向右遍历,留个下一个区间的空间大一点,从而尽量避免交叉
全局最优:选取最多的非交叉区间

在这里插入图片描述
如图,区间1,2,3,4,5,6已经按照右边界排好序

  1. 每次取非交叉区间的时候,都是选择右边界最小的来做分割点,所以第一条分割线就是区间1结束的位置
  2. 接下来就是找大于区间1结束位置的区间,是从区间4开始;注意这里不是从区间5开始,因为已经是按照右边界排序的了,区间5其实是排在区间4后面的
  3. 区间4结束后,再找到区间6,所以一共非交叉区间是3个
  4. 最后总区间数为6,减去非交叉区间3个,移除区间的最小数量就是3

简单来说算法核心就是:先按照右边界排序,然后选右边界小的作为分割点,再继续从这个右边界开始的区间内选右边界最小

java代码如下:

class Solution {
    public int eraseOverlapIntervals(int[][] intervals) {
        Arrays.sort(intervals, (a,b)-> {//按照右边界排序
            return Integer.compare(a[1],b[1]);//如果写了代码块{}则需要return
        });
        int count = 1;//非交叉区间的个数
        for(int i = 1; i < intervals.length; i++){
            if(intervals[i][0] < intervals[i-1][1]){//如果当前区间的左边界小于上一个区间的右边界,说明有重叠,需要更新边界,继续找下一个右边界
                intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);//选右边界小的为分割点
                continue;
            }else{
                count++;
            }    
        }
        return intervals.length - count;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HDU-五七小卡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值