题目
输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)
B是A的子结构, 即 A中有出现和B相同的结构和节点值。
例如:
给定的树 A:
给定的树 B:
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。
思路
先序遍历+包含判断
若树 B
是树 A
的子结构,则子结构B
的根节点可能为树 A
的任意一个节点。因此,判断树 B
是否是树 A
的子结构,需完成以下两步工作:
- 先序遍历树
A
中的每个节点nodeA
;(对应函数isSubStructure(A, B)
) - 判断树
A
中 以nodeA
为根节点的子树 是否包含树B
(对应函数recur(A,B)
)
算法流程:
树
A
的根节点记作 节点A
,树B
的根节点称为 节点B
recur(A, B)
函数:
-
终止条件:
(1)当节点B
为空:说明树B
已匹配完成(越过叶子节点),因此返回true
;
(2)当节点A
为空:说明已经越过树A
叶子节点,即匹配失败,返回false
;
(3)当节点A
和B
的值不同:说明匹配失败,返回false
; -
返回值:
(1)判断A
和B
的左子节点是否相等,即recur(A.left, B.left)
;
(2)判断A
和B
的右子节点是否相等,即recur(A.right, B.right)
;
isSubStructure(A, B)
函数:
- 特例处理: 当 树
A
为空 或 树B
为空 时,直接返回false
(因为B
为空题目约定空树不是任何一个树的子结构,而A
为空说明B
无法匹配成功); - 返回值: 若树
B
是树A
的子结构,则必满足以下三种情况之一
(1)以 节点A
为根节点的子树 包含树B
,对应recur(A, B)
;
(2)树B
是 树A
左子树 的子结构,对应isSubStructure(A.left, B)
;
(3)树B
是 树A
右子树 的子结构,对应isSubStructure(A.right, B)
;
以上 (2)(3)实质上是在对树A
做 先序遍历 。
java代码如下:
class Solution {
//要注意区别,isSubStructure()中 B == null 和recur()中 B == null是不同的含义,前者返回的是false,因为B == null空树不能成为子结构,后者返回true,因为B == null说明匹配完成,走到了最后的叶子结点
//判断B是否是A的子结构
public boolean isSubStructure(TreeNode A, TreeNode B) {
return (A != null && B != null) && (recur(A, B) || isSubStructure(A.left, B) || isSubStructure(A.right, B));//B为空则返回false,因为题目约定空树不是任何树的子结构
}
//判断A中是否包含B
boolean recur(TreeNode A, TreeNode B) {
if(B == null) return true;//B为空说明匹配完成(走到了叶子结点)
if(A == null || A.val != B.val) return false;//匹配失败
return recur(A.left, B.left) && recur(A.right, B.right);
}
}