useful url about text

1.用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
http://geek.csdn.net/news/detail/189196

2.TF-IDF及其算法
https://blog.csdn.net/sangyongjia/article/details/52440063

3.基于深度学习的问题分类的研究
http://wap.cnki.net/lunwen-1016774391.nh.html

4.用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 知乎

https://zhuanlan.zhihu.com/p/25928551

5.【good】基于gensim的Wiki百科中文word2vec训练

https://segmentfault.com/a/1190000010129248

6.维基百科的中文语料获取

http://licstar.net/archives/262

7.基于深度学习与主题模型的问句相似度计算

http://cdmd.cnki.com.cn/Article/CDMD-10007-1016717894.htm

8.面向自动问答的短问题分类研究

http://cdmd.cnki.com.cn/Article/CDMD-10613-1015338968.htm

9.基于 Gensim 的 Word2Vec 实践

https://segmentfault.com/a/1190000008173404?from=timeline

10.Python-读入json文件并进行解析及json基本操作
https://blog.csdn.net/ko_tin/article/details/72472793


11.HTTP 400 错误 - 请求无效 (Bad request)
https://www.cnblogs.com/beppezhang/p/5824986.html


12.UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-1: ordinal not in range(128)
https://www.cnblogs.com/bluescorpio/p/3594359.html


13.python通过get方式,post方式发送http请求和接收http响应-urllib urllib2
https://www.cnblogs.com/poerli/p/6429673.html


14.Python3.6通过自带的urllib通过get或post方法请求url
https://blog.csdn.net/qq5132834/article/details/78904974


15.【good】(三)百度AI 开放平台API调用之应用实践

https://blog.csdn.net/shuihupo/article/details/79867934

16.word2vec原理(一) CBOW与Skip-Gram模型基础
ttps://www.cnblogs.com/pinard/p/7160330.html


17.自己动手写word2vec (四):CBOW和skip-gram模型
https://blog.csdn.net/u014595019/article/details/51943428


18.一文详解 Word2vec 之 Skip-Gram 模型(结构篇)
https://www.leiphone.com/news/201706/PamWKpfRFEI42McI.html


19.Word2Vec概述与基于Hierarchical Softmax的CBOW和Skip-gram模型公式推导
https://blog.csdn.net/liuyuemaicha/article/details/52611219


20.DL4NLP——词表示模型(三)word2vec(CBOW/Skip-gram)的加速:Hierarchical Softmax与Negative Sampling
https://www.cnblogs.com/Determined22/p/5807362.html


21. word2vector:NPLM、CBOW、Skip-gram

https://blog.csdn.net/mmc2015/article/details/54895901

22. 向量空间模型(VSM)在文档相似度计算上的简单介绍
https://blog.csdn.net/felomeng/article/details/4024078

23.PaperWeekly 第37期 | 论文盘点:检索式问答系统的语义匹配模型(神经网络篇)
https://zhuanlan.zhihu.com/p/26879507

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值