Codeforces 1006F

There is a rectangular grid of size n×mn×m . Each cell has a number written on it; the number on the cell (i,ji,j ) is ai,jai,j . Your task is to calculate the number of paths from the upper-left cell (1,11,1 ) to the bottom-right cell (n,mn,m ) meeting the following constraints:

  • You can move to the right or to the bottom only. Formally, from the cell (i,ji,j ) you may move to the cell (i,j+1i,j+1 ) or to the cell (i+1,ji+1,j ). The target cell can't be outside of the grid.
  • The xor of all the numbers on the path from the cell (1,11,1 ) to the cell (n,mn,m ) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).

Find the number of such paths in the given grid.

Input

The first line of the input contains three integers nn , mm and kk (1≤n,m≤201≤n,m≤20 , 0≤k≤10180≤k≤1018 ) — the height and the width of the grid, and the number kk .

The next nn lines contain mm integers each, the jj -th element in the ii -th line is ai,jai,j (0≤ai,j≤10180≤ai,j≤1018 ).

Output

Print one integer — the number of paths from (1,11,1 ) to (n,mn,m ) with xor sum equal to kk .

Examples

Input

3 3 11
2 1 5
7 10 0
12 6 4

Output

3

Input

3 4 2
1 3 3 3
0 3 3 2
3 0 1 1

Output

5

Input

3 4 1000000000000000000
1 3 3 3
0 3 3 2
3 0 1 1

Output

0

Note

All the paths from the first example:

  • (1,1)→(2,1)→(3,1)→(3,2)→(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3) ;
  • (1,1)→(2,1)→(2,2)→(2,3)→(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3) ;
  • (1,1)→(1,2)→(2,2)→(3,2)→(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3) .

All the paths from the second example:

  • (1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4) ;
  • (1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4) ;
  • (1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4) ;
  • (1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4) ;
  • (1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4) .

思路:双向广搜

一边从左上角往右下角扩展,一边从右下角往左上角扩展。

利用map保存结点。

从左上角往右下角扩展之后,记得将与下次bfs重复的地方置0(否则会改变异或的结果)

存入数组最好从1开始(避免出现n=1,m=1的情况)

#include<cstdio>
#include<map>
#include<queue>
using namespace std;
static const int MAX = 25;
long long n, m;
long long k;
long long a[MAX][MAX];
int dir1_x[2] = {1, 0};
int dir1_y[2] = {0, 1};
int dir2_x[2] = {-1, 0};
int dir2_y[2] = {0, -1};
long long res;

struct point{
    int x, y;
    long long state;
    point(int x1, int y1) : x(x1), y(y1) {}
    point(int x1, int y1, long long s) : x(x1), y(y1), state(s){}
    bool operator < (const point& p) const
    {
        if (x != p.x)
            return x < p.x;
        else if (y != p.y)
            return y < p.y;
        else
            return state < p.state;
    }
    int sum(){return x + y;}
};
map<point, long long> mp;

//从左上角到右下角的bfs
void bfs1(point s)
{
    int bound = (n + m) / 2 + 1;
    s.state = a[s.x][s.y];
    queue<point> que;
    que.push(s);
    while (!que.empty())
    {
        point tmp = que.front();
        que.pop();
        if (tmp.sum() == bound)
        {
            mp[tmp]++;
            continue;
        }
        for (int i = 0; i < 2; i++)
        {
            int tx = tmp.x + dir1_x[i];
            int ty = tmp.y + dir1_y[i];
            if (tx > n || ty > m)
                continue;
            long long state = tmp.state ^ a[tx][ty];
            que.push(point(tx, ty, state));
        }
    }
}

//从右下角到左上角的bfs
void bfs2(point s)
{
    int bound = (n + m) / 2 + 1;
    s.state = k ^ a[s.x][s.y];
    queue<point> que;
    que.push(s);
    while (!que.empty())
    {
        point tmp = que.front();
        que.pop();
        if (tmp.sum() == bound)
        {
            res += mp[tmp];
            continue;
        }
        for (int i = 0; i < 2; i++)
        {
            int tx = tmp.x + dir2_x[i];
            int ty = tmp.y + dir2_y[i];
            if (tx < 1 || ty < 1)
                continue;
            long long state = tmp.state ^ a[tx][ty];
            que.push(point(tx, ty, state));
        }
    }
}

int main()
{
    while (scanf("%lld %lld %lld", &n, &m, &k) != EOF)
    {
        res = 0;
        mp.clear();
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++)
                scanf("%lld", &a[i][j]);

        bfs1(point(1, 1));

        int bound = (n + m) / 2 + 1;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++)
                if (i + j == bound)
                    a[i][j] = 0;

        bfs2(point(n, m));

        printf("%lld\n", res);
    }

    return 0;
}




 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值