domain adaptation 之 domain adversarial learning (一)

本文探讨了如何使用生成对抗网络进行域适应,以解决显微镜图像分类的问题。通过共享网络权重和gradient reversal layer学习域不变性特征,结合focal loss、entropy loss和domain loss进行优化。文章介绍了将此方法应用于WSI和MSI图像,旨在减小不同域之间的差异,提升分类性能。
摘要由CSDN通过智能技术生成

通过对抗性学习学习域之间的不变性是域适应中的一个策略。如何去设计一个新方法对域进行适应被简化为三个问题:

  1. 是否选择基于生成或者辨别的网络;
  2. 是否共享网络权重;
  3. 选择哪一个对抗学习目标。

论文[1]中介绍了一种域自适应方法,该方法使用了生成对抗网络,共享了网络权重,并选择GRL (gradient reversal layer)学习域之间的不变性特征。接下来对论文[1]进行介绍。

该论文的目的是对显微镜图像(microscopy images, MSI) 进行分类,但是显微镜图像是没有标注的,但是整张切片图像(whole slide images, WSI)是有标注的。作者的想法便是使用WSI对网络进行训练,然后使用训练得到的网络对MSI进行分类。虽然MSI来自WSI,但是MSI只是WSI的局部,也就是说两者的特征空间是有区别的,这时候简单地将WSI训练的网络用在MSI上并不是最佳的选择,所以有必要使用MSI进行辅助训练,使网络能记住WSI、MSI两个特征域的特点,如下图。
在这里插入图片描述文章使用了三组损失函数:focal loss、entropy loss、domain loss。其中focal loss仅对有标注的WSI数据使用,entropy loss与domain loss则对WSI、MSI同时使用。上图中虽然有两个网络通道,但是两个网络的参数是共享的。

标记源域(即WSI域)为 D s = { x i s , y i s } i = 1 n D_s= \{ x_i^s,y_i^s\}_{i=1}^n Ds={ xis,yis}i=1n,目标域(即MSI域)为 D t = { x i t } i = 1 m D_t= \{x_i^t\}_{i=1}^m Dt={ xit}i=1m。这里使用的focal loss为 L y = − 1 n s ∑ ( x i s , y i s ) ∈ D s ∑ k = 1 C y i , k s log ⁡ ( G y k ( G f ( x i s ) ) L_y= -\frac{1}{n_s}\sum_{(x_i^s,y_i^s)∈D_s}\sum_{k=1}^Cy_{i,k}^s\log(G_y^k(G_f(x_i^s)) Ly=ns1(xis,yis)Dsk=1Cyi,kslog(G

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值