Domain Adaptation(领域自适应)

1.挑战:我们有一堆有标注的source domain资料,还有大量的无标注的target domain 资料。我们可以训练一个在source domain 上难免表现很出色的模型,但是当target domian和source domain的数据分布不一样时候,我们之前在source domian上面训练的模型,在target domain上面表现可能不是很好。如何解决这种问题呢?这就是Domain Adaptation要解决的问题

2.解决思路:我们可以利用领域对抗训练的思路。如下图:

        其中绿色长方形的代表我们从source domain和target domain提取的特征图(特征向量),我们要求来自两张图片(source domain 和target domain)出现的数据点(红色点和蓝色点)分布应该看起来一样,分不出差异。 

        如何做到使得两组数据点(来自source domian的蓝色点和target domain的红色点)分布相似呢?我们需要的是Domian Adeversarial Training(领域对抗训练) 如下图。

         Domain Adversary training这和生成对抗网络的思路类似。他要求feature extractor 提取的两个领域的特征,让domain classifier分不出来。但是有一个问题就是如果特征提取器都提取全0向量的特征,那判别器肯定是无法区分了,但这不是我们想要的情况。那这种提取全0向量的情况会发生吗?(并不会,因为label predictor需要标签,所以会知道feature extrator提取有用的特征)

       最开始的domain adversarial training做法并不是最好的):  如上图,我们想通过label predictor将有标签的source domain data正确区分,其损失函数为:L,越小越好,即分类越正确越好。我们还需要一个domain claasifier 将两个领域source domian data和target domian data区分开来,其损失函数为:Ld,越小越好,越正确越好。最后feature extractor需要和label predictor站在同一战线,提取出让domian claasifier无法正确区分领域的特征,所以他的损失函数为:L-Ld。

        原始论文如下

         上述方法的局限性:无法使得target data像source data有一样的分界线,如下图:

         解决办法:如下图

        以上讨论的技术,都默认source domian data和target domian data的数据标签是相同的,但实际上,source domain和target domian不一定标签重合,如下图,还可能出现其他三种情况:

source domain类别多,target domian 类别少 

source domain类别少,target domian 类别多 

source domain类别和target domian 类别有重合但是也有不同。

        可以参考Universal domian adaptation(cvpr2019年文章)

        另外一个问题假设target data只有一张图片(非常少)怎么办

         更严峻的挑战如果对target domian基本不了解怎么办

        1.domian generalization

 本文是观看李宏毅老师上课时的笔记。

后续我会阅读Universal domian adaptation(通用领自适应)

领域自适应方法是指在机器学习和数据挖掘领域中,用于解决在不同领域之间存在的数据分布差异问题的一类方法。以下是一些常见的领域自适应方法: 1. 领域自适应迁移学习(Domain Adaptation Transfer Learning):该方法通过将源领域的知识迁移到目标领域,来减小领域之间的差异。常见的迁移学习方法包括基于实例的方法、基于特征的方法和基于模型的方法。 2. 领域自适应生成模型(Domain Adaptation Generative Models):该方法通过生成模型来学习源领域和目标领域之间的数据分布差异,并生成适应目标领域的样本。常见的生成模型包括生成对抗网络(GAN)和变分自编码器(VAE)等。 3. 领域自适应特征选择(Domain Adaptation Feature Selection):该方法通过选择源领域和目标领域共享的特征,来减小领域之间的差异。常见的特征选择方法包括最大均值差异(MMD)和最大均值匹配(MMD)等。 4. 领域自适应度量学习(Domain Adaptation Metric Learning):该方法通过学习一个适应目标领域的度量函数,来减小领域之间的差异。常见的度量学习方法包括最大均值差异(MMD)和最大均值匹配(MMD)等。 5. 领域自适应强化学习(Domain Adaptation Reinforcement Learning):该方法通过在源领域上训练一个策略,并通过在目标领域上进行迁移学习来适应目标领域。常见的强化学习方法包括深度强化学习和逆强化学习等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值