欧拉方法与改进欧拉方法
一、算法原理
对给定微分方程
{ y ′ = f ( x , y ) y ( x 0 ) = y 0 (1) \begin{cases} y' = f(x,y)\\ y(x_0) = y_0 \end{cases}\tag{1} {
y′=f(x,y)y(x0)=y0(1)
在xn到xn+1上积分,得到
y n + 1 = y n + ∫ x n x n + 1 f ( t , y ( t ) ) d t (2) y_{n+1} = y_n + \int_{x_n}^{x_{n+1}}f(t,y(t))dt \tag{2} yn+1=yn+∫xnxn+1f(t,y(t)