【微分方程数值解】常微分方程(一)欧拉方法和改进欧拉方法(附python算例,封装类)

欧拉方法与改进欧拉方法


一、算法原理

对给定微分方程
{ y ′ = f ( x , y ) y ( x 0 ) = y 0 (1) \begin{cases} y' = f(x,y)\\ y(x_0) = y_0 \end{cases}\tag{1} { y=f(x,y)y(x0)=y0(1)
在xn到xn+1上积分,得到

y n + 1 = y n + ∫ x n x n + 1 f ( t , y ( t ) ) d t (2) y_{n+1} = y_n + \int_{x_n}^{x_{n+1}}f(t,y(t))dt \tag{2} yn+1=yn+xnxn+1f(t,y(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值