给你一个整数数组 A,只有可以将其划分为三个和相等的非空部分时才返回 true,否则返回 false。
形式上,如果可以找出索引 i+1 < j 且满足 (A[0] + A[1] + … + A[i] == A[i+1] + A[i+2] + … + A[j-1] == A[j] + A[j-1] + … + A[A.length - 1]) 就可以将数组三等分。
示例 1:
输出:[0,2,1,-6,6,-7,9,1,2,0,1]
输出:true
解释:0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
示例 2:
输入:[0,2,1,-6,6,7,9,-1,2,0,1]
输出:false
示例 3:
输入:[3,3,6,5,-2,2,5,1,-9,4]
输出:true
解释:3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
提示:
3 <= A.length <= 50000
-10^4 <= A[i] <= 10^4
解题思路:
既然是将数组分为三部分并且每部分和相等,那么每一部分的和为总和的三分之一,就一这个条件可以为解题方法—num/3;
通过示例,我推断是这三个数组是按顺序来的,意思就是从头开始相加,一直加到num/3,不会出现子数组和为num/3的情况,所以这道题很好解决,只要按顺序累加和到num/3,就从0开始下一次累加;
注意:
要考虑的时,数组中所有的数都要加完,举个例子:{10,-10,10,-10,10,-10,10,-10};
我在一次提交时出现了这个问题,我原来的算法对这个数组处理结果为[10,-10],[10,-10],[10,-10],那么会漏掉几个数据,所以我加了一个flag标记,每组数组和等于num/3时,flag++;
但是当这个标记是2并且数组还没到末尾时循环依然进行,再跳出循环再对flag进行一次判断,就顺利解决了问题,成功ac
class Solution {
public:
bool canThreePartsEqualSum(vector<int>& A) {
if(A.size()<3)
{
return false;
}
int num=0;
for(auto i:A)
{
num+=i;
}
num/=3;
int temp=0;
int flag=0;
for(int i=0;i<A.size();i++)
{
temp+=A[i];// 累加和
if(flag==2&&i!=A.size()-1)
{
continue;
}
if(temp==num)
{
flag++;
temp=0;
}
}
if(flag==3)// 是否分成三组数组
{
return true;
}
return false;
}
};