输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上 c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数 n,m,q。
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含 5 个整数 x1,y1,x2,y2,c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1≤n,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤c≤1000,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
作用: 同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)
二维差分原理:同一维差分一样, 需要构造一个矩阵b, 使得原矩阵a 是它的前缀和矩阵。
如何求:
核心
b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;
#include<iostream>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
int n,m,q;
// 核心, 插入函数
inline void insert(int x1, int y1, int x2, int y2, int c)
{
b[x1][y1] += c;
b[x2+1][y1] -=c;
b[x1][y2+1] -=c;
b[x2+1][y2+1] +=c;
}
int main()
{
cin >> n >> m >> q;
for(int i =1; i<=n; i++)
for(int j =1;j<=m;j++)
{
cin >> a[i][j];
insert(i,j,i,j,a[i][j]);
}
for(int i=1;i<=q;i++)
{
int x1,y1,x2,y2,c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1,x2, y2, c);
}
for(int i=1; i<=n;i++)
for(int j =1; j<=m;j++)
{
b[i][j] += b[i-1][j] + b[i][j-1] - b[i-1][j-1]; //前缀和 等于后面求的矩阵
}
for(int i = 1; i<=n;i++)
{
for(int j=1;j<=m; j++)
{
cout << b[i][j] << " ";
}
cout << endl;
}
return 0;
}