Trie 树 : 高效地存储和查找字符串集合的数据结构。
一般用trie ,题目限制了字符种类26个或者52个。
如果想在trie 中保存下面一组字符串,原理如下:
abcdef、abdef、aced、bcdf、bcff、cdaa、bcdc
存储:

一般来说,会在所有结尾的单词标记一下,不然在有可能重复的地方找不到该单词。
查找:
直接进行一层一层下来找,如果有在trie树中以查找字符串结束的字符,则true,反之,false。
题目:
维护一个字符串集合,支持两种操作:
I x 向集合中插入一个字符串 x;
Q x 询问一个字符串在集合中出现了多少次。
共有 N 个操作,输入的字符串总长度不超过 105,字符串仅包含小写英文字母。
输入格式
第一行包含整数 N,表示操作数。
接下来 N 行,每行包含一个操作指令,指令为 I x 或 Q x 中的一种。
输出格式
对于每个询问指令 Q x,都要输出一个整数作为结果,表示 x 在集合中出现的次数。
每个结果占一行。
数据范围
1≤N≤2∗104
输入样例:
5
I abc
Q abc
Q ab
I ab
Q ab
输出样例:
1
0
1
思路:
- trie 的构造
- 每个节点唯一标识
- 每个字符串结尾都有标志,保存数量
code:
#include <iostream>
using namespace std;
const int N = 100010;
// son[N][26] : N 表示有N层
// 每个节点的最多26, cnt表示 以第N个节点结尾字符串的个数,idx表示索引

本文介绍如何使用Trie树高效地存储和处理长度不超过105的小写英文字母字符串集合,包括插入字符串和查询字符串出现次数的操作。通过实例演示了如何构造Trie树并实现插入和查询算法,适合处理大规模字符串集合的查询需求。
最低0.47元/天 解锁文章
318

被折叠的 条评论
为什么被折叠?



