给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible
。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
学到spfa 算法,我们需要将它与之前的Bellman-ford
算法比较一下, 为什么呢, 是因为spfa 算法只是对Bellman-ford
的一个优化。
优化了哪里
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。
1)Bellman_ford
算法里最后return -1
的判断条件写的是dist[n]>0x3f3f3f3f/2;
而spfa算法写的是dist[n]==0x3f3f3f3f;
其原因在于Bellman_ford
算法会遍历所有的边,因此不管是不是和源点连通的边它都会得到更新;但是SPFA算法不一样,它相当于采用了BFS
,因此遍历到的结点都是与源点连通的,因此如果你要求的n和源点不连通,它不会得到更新,还是保持的0x3f3f3f3f
。
2)Bellman_ford
算法可以存在负权回路,是因为其循环的次数是有限制的因此最终不会发生死循环;但是SPFA算法不可以,由于用了队列来存储,只要发生了更新就会不断的入队,因此假如有负权回路请你不要用SPFA否则会死循环
3)由于SPFA算法是由Bellman_ford
算法优化而来,在最坏的情况下时间复杂度和它一样即时间复杂度为 O(nm),一般情况的时间复杂度为O(m) ,假如题目时间允许可以直接用SPFA算法去解Dijkstra算法的题目。(题目不卡可以选择这个解两个类型题)
4)求负环一般使用SPFA算法,方法是用一个cnt数组记录每个点到源点的边数,一个点被更新一次就+1,一旦有点的边数达到了n那就证明存在了负环。
代码实现:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int h[N], e[N], ne[N], idx, w[N];
int dist[N];
bool st[N];
int n,m;
void add(int a, int b, int c)
{
w[idx] = c;
e[idx] = b; ne[idx] = h[a]; h[a] = idx ++;
}
int spfa()
{
queue<int> q;
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
q.push(1);
st[1] = true;
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if( dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return dist[n];
}
int main()
{
cin >> n >> m;
memset(h, - 1, sizeof h);
while (m -- )
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
int re = spfa();
if(re == 0x3f3f3f3f) puts("impossible");
else cout << re << endl;
return 0;
}
acwing 852. spfa判断负环
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
代码实现:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 100010;
int h[N], e[N], ne[N], idx, w[N];
int dist[N];
bool st[N];
int n,m;
int cnt[N];
void add(int a, int b, int c)
{
w[idx] = c;
e[idx] = b; ne[idx] = h[a]; h[a] = idx ++;
}
int spfa()
{
queue<int> q;
for(int i = 1; i <= n; i ++)
{
st[i] = true;
q.push(i);
}
while(q.size())
{
int t = q.front();
q.pop();
st[t] = false;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if( dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if(cnt[j] >= n) return true;
if(!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}
return false;
}
int main()
{
cin >> n >> m;
memset(h, - 1, sizeof h);
while (m -- )
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
if(spfa()) puts("Yes");
else puts("No");
return 0;
}