acwing 851. spfa求最短路 + acwing 852. spfa判断负环

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。

数据保证不存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

学到spfa 算法,我们需要将它与之前的Bellman-ford算法比较一下, 为什么呢, 是因为spfa 算法只是对Bellman-ford的一个优化。

优化了哪里

Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。

1)Bellman_ford算法里最后return -1的判断条件写的是dist[n]>0x3f3f3f3f/2;而spfa算法写的是dist[n]==0x3f3f3f3f;其原因在于Bellman_ford算法会遍历所有的边,因此不管是不是和源点连通的边它都会得到更新;但是SPFA算法不一样,它相当于采用了BFS,因此遍历到的结点都是与源点连通的,因此如果你要求的n和源点不连通,它不会得到更新,还是保持的0x3f3f3f3f

2)Bellman_ford算法可以存在负权回路,是因为其循环的次数是有限制的因此最终不会发生死循环;但是SPFA算法不可以,由于用了队列来存储,只要发生了更新就会不断的入队,因此假如有负权回路请你不要用SPFA否则会死循环

3)由于SPFA算法是由Bellman_ford算法优化而来,在最坏的情况下时间复杂度和它一样即时间复杂度为 O(nm),一般情况的时间复杂度为O(m) ,假如题目时间允许可以直接用SPFA算法去解Dijkstra算法的题目。(题目不卡可以选择这个解两个类型题)

4)求负环一般使用SPFA算法,方法是用一个cnt数组记录每个点到源点的边数,一个点被更新一次就+1,一旦有点的边数达到了n那就证明存在了负环。

代码实现:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
 
const int N = 100010;

int h[N], e[N], ne[N], idx, w[N];
int dist[N];
bool st[N];
int n,m;

void add(int a, int b, int c)
{
    w[idx] = c;
    e[idx] = b; ne[idx] = h[a]; h[a] = idx ++;
}

int spfa()
{
    queue<int> q;
    
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    q.push(1);
    st[1] = true;
    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if( dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return dist[n];
}

int main()
{
    cin >> n >> m;
    memset(h, - 1, sizeof h);
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    int re = spfa();
    if(re == 0x3f3f3f3f) puts("impossible");
    else cout << re << endl;
    
    return 0;
}

acwing 852. spfa判断负环

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes

代码实现:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
 
const int N = 100010;

int h[N], e[N], ne[N], idx, w[N];
int dist[N];
bool st[N];
int n,m;
int cnt[N];

void add(int a, int b, int c)
{
    w[idx] = c;
    e[idx] = b; ne[idx] = h[a]; h[a] = idx ++;
}

int spfa()
{
    queue<int> q;
    
    for(int i = 1; i <= n; i ++)
    {
        st[i] = true;
        q.push(i);
    }

    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if( dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] >= n) return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> m;
    memset(h, - 1, sizeof h);
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    if(spfa()) puts("Yes");
    else puts("No");

    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值