acwing 868. 筛质数

给定一个正整数 n,请你求出 1∼n 中质数的个数。

输入格式
共一行,包含整数 n。

输出格式
共一行,包含一个整数,表示 1∼n 中质数的个数。

数据范围
1≤n≤106

输入样例:
8
输出样例:
4

方法1: 朴素版本筛质数:暴力枚举
直接通过枚举1~n 的质数,然后标记一个数的倍数即可
时间复杂度: O(nlogn)

void get_primes(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        if(!st[i]) primes[cnt ++] = i;  // 保存质数
        for(int j = i; j <= n; j += i)  // 删除质数的倍数
            st[j] = true;
    }
}

方法2:埃氏筛选法: 用质数去筛选合数,但是不能保证每个数筛选了几次
时间复杂度: O(nloglogn)

void get_primes(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        // 只需要筛选质数的倍数就行了
        if(!st[i])
        {
            primes[cnt ++] = i;   // 保存质数
            for(int j = i; j <= n; j += i) //可以用质数就把所有的合数都筛掉;
                st[j] = true;
        }
    }
}

方法3: 线性筛选法:保证了每个合数被最小质因子筛选出来的,只筛选了一次,所以是线性的
也叫欧拉筛选法

埃氏筛存在一个缺陷,即对于一个合数,可能会被筛多次,例如 30=2×15=5×6…30=2×15=5×6…,我们改用其最小质因子去筛掉这个合数,就可以保证他只会被筛一次。

我们从小到大枚举所有质因子 primes[j]。

1、当出现 i % primes[j] == 0 时,primes[j] 一定是 i 的最小质因子,因此也一定是 primes[j] * i 的最小质因子。

2、当出现 i % primes[j] != 0 时,说明我们还尚未枚举到 i 的任何一个质因子,也就表示 primes[j] 小于 i 的任何一个质因子,这时 primes[j] 就一定是 primes[j] * i 的最小质因子。

可以发现无论如何,primes[j] 都一定是 primes[j] * i 的最小质因子,并且由于所要筛的质数在 2∼n 之间,因此合数最大为 n,故 primes[j] * i 只需枚举到 n 即可,但由于 primes[j] * i 可能会溢出整数范围,故改成 primes[j] <= n / i 的形式。

时间复杂度: O(n)

void get_primes3(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        // 如果不是质数, 加入进去
        if(!st[i]) primes[cnt ++] = i;  // 保存质数
        // 这个筛法:是从小到大枚举所有的质数
        for(int j = 0; primes[j] <= n / i; j ++)
        {
            // ...
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break;   // primes[j] 一定是i 的最小质因子
        }
    }
}

完整代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1e6 + 10;
bool st[N];
int primes[N], cnt;

// 朴素版本筛质数
void get_primes(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        if(!st[i]) primes[cnt ++] = i;  // 保存质数
        for(int j = i; j <= n; j += i)  // 删除质数的倍数
            st[j] = true;
    }
}

// 埃氏筛选法: 用质数去筛选合数,但是不能保证每个数筛选了几次
void get_primes2(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        // 只需要筛选质数的倍数就行了
        if(!st[i])
        {
            primes[cnt ++] = i;   // 保存质数
            for(int j = i; j <= n; j += i) //可以用质数就把所有的合数都筛掉;
                st[j] = true;
        }
    }
}


// 线性筛选法:保证了每个合数被最小质因子筛选出来的,只筛选了一次,所以是线性的 
void get_primes3(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        // 如果不是质数, 加入进去
        if(!st[i]) primes[cnt ++] = i;  // 保存质数
        // 这个筛法:是从小到大枚举所有的质数
        for(int j = 0; primes[j] <= n / i; j ++)
        {
            // 表示用primes[j] * i的最小质因数primes[j] 筛掉primes[j] * i这个合数
            // 因为此时i % primes[j] == 0一定是未成立的,因此primes[j]一定小于i的最小质因数,因此primes[j]是primes[j]*i的最小质因数
            st[primes[j] * i] = true;

			// 因为此时i % primes[j] == 0成立了,primes[j]是i的最小质因数。
			// 如果此时不break,那么primes[j]会继续向后遍历,导致primes[j]不再是i的最小质因数,也不是primes[j] * i的最小质因数
            if(i % primes[j] == 0) break;   // primes[j] 一定是i 的最小质因子
        }
    }
}

int main()
{
    int n;
    cin >> n;
    get_primes3(n);
    cout << cnt << endl;
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值