作者简介:C/C++ 、Golang 领域耕耘者,创作者
个人主页:作者主页
活动地址:CSDN21天学习挑战赛
题目来源: leetcode官网
如果感觉博主的文章还不错的话,还请关注➕ 、点赞👍 、收藏🧡三连支持一下博主哦~~~
💜 题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例1:
输入:m = 3, n = 7
输出:28
示例2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
示例 3:
输入:m = 3, n = 3
输出:6
🧡 算法分析
此题方法是用dp
我们画一个图,模拟一下不同路径
由于是一个简单的dp,这里直接给出递归公式
f(i, j) = f(i - 1, j) + f(i, j - 1)
由于有特殊情况, 当i == 0
时, f(i, j) = f(i, j - 1)
; 当j == 0
时,f(i, j) = f(i - 1, j )
当然了 当i ==0 && j == 0
时, f(i, j) = 1
💚 代码实现
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f(m, vector<int>(n));
for(int i = 0; i < m; i ++)
for(int j = 0; j < n; j ++)
{
if (!i && !j) f[i][j] = 1;
else
{
if(i) f[i][j] += f[i - 1][j];
if(j) f[i][j] += f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
};
上述做法需要一个大小为m x n的二维数组,空间复杂度为O(mn),但其实dp[i][j]
只会用到dp[i-1][j]
和dp[i][j-1]
,不会用到之前的数据,因此可以用滚动数组减小空间复杂度。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> f(n, 1); // 全部初始化1
for(int i = 1; i < m; i ++)
for(int j = 1; j < n; j ++)
{
f[j] += f[j - 1];
}
return f[n -1];
}
};
执行结果:
💙 时间复杂度分析
动态规划, 时间复杂度为O(m * n)
如果觉得对你有帮助的话:
👍 点赞,你的认可是我创作的动力!
🧡 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!