brain connectivity---脑连接学习---论文阅读,python简单实现

学习一个使用python可以可视化脑波的运动轨迹
SCoT—a source connectivity toolbox for Python
该文章使用MVARICA方法实现了盲源分解和连通性估计的例程。

背景知识
量化大脑区域之间的相互作用是神经科学中重要且有用的工具。
在空间上分开的大脑区域形成动态大规模网络,这些网络通过功能和有效的连通性来描述。
虽然功能连通性可以衡量同步激活,但有效连通性可以解释区域之间的因果关系。

可以通过使用VAR模型从多通道EEG推导连接性。
估算源活动的常用方法包括原定位技术和独立成分分析(ICA)。ICA无需依赖头部模型即可执行EEG通道的盲分解。从ICA获得的源信号可以解释为源自皮层偶极子。

**MVARICA **

EEG–> PCA–>VAR–> ICA
首先通过应用主成分分析(PCA)对EEG进行转换:yn = Cxn = CMsn
yn中的信号包含PCA转换后的EEG
修剪PCA转换矩阵C以除去对总EEG方差贡献最小的成分。 此步骤减小了后续处理的维数,并限制了MVARICA发现的光源数量。
其次,将具有系数A(k)和残差过程rn的VAR模型拟合为yn:yn = p k = 1 A(k)yn-k + rn
将拟合到yn的VAR模型与描述源激活的VAR模型相关联:A(k) = (CM)B(k) (CM) −1 ;
rn = (CM)en
在第三步中,用ICA对残差进行分解,以获得对变换CMˆ的估计
通常,MVARICA适用于多重试验数据。 可以采用不同的策略来获得VAR残差r,具体取决于数据上的平稳性假设。

CSPVARICA
EEG–> CSP–>VAR–> ICA
MVARICA通过丢弃对总EEG方差贡献最小的主成分来降低输入维数。但是,感兴趣的EEG组件通常具有较低的信噪比。因此,PCA可能会删除此类组件,同时保留较高方差的噪声。
建议使用通用空间模式(CSP)代替PCA
以上内容参考于这篇论文,感兴趣的小伙伴可以阅读:
Billinger, M., Brunner, C., & Müller-Putz, G. R. (2014). SCoT: a Python toolbox for EEG source connectivity. Frontiers in Neuroinformatics, 8. doi:10.3389/fninf.2014.00022

下边是实现方法

def main():
    # Read EEG data
    raweeg, times, fs, ch_names = dataset.read_file('E:/ffmpeg-latest-win64-static/ERP/result/video_1/210113_0006_EEG.edf')#eeg信号保存到edf中
    #eeg.shape(18, 319500)
    triggers = np.linspace(int(0), int(319500), 320)#将信号2秒分为一段,共分为320段信号
    triggers = triggers[:-1]#去掉最后一段
    print(triggers)
    classes = np.random.randint(0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值