一.非()
非就是相反的.
A | |
1 | 0 |
0 | 1 |
电路图:
二.与()
A与B就是只有A,B同时为1,结果才为1(下表粉色所示),其余为0.
A | B | R |
0 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
由上图中蓝色可见:
与遵守 1.交换律
另外与还遵守
2.结合律
3.互补律
4.幂等律
5.狄摩根定律
电路图:
三.或(A+B)
A或B只有A,B同时为0,结果才为0(下表粉色所示),否则为1;
A | B | R |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
同样上图中蓝色可见
"或"也遵守 1.交换律 A+B=B+A
2. 结合律 A+(B+C)=(A+B)+C
3.互补律 A+=1
4.幂等律 A+A=A
5.狄摩根定律
以上"或"的运算规律可与"与"的对比
除此之外,"与"和"或"还遵守如下规律:
1.吸收律 A·(A+B)=A 和 A+A·B=A
证明 A·(A+B)=A A B S 1 1 1 1 0 1 0 1 0 0 0 0 A始终等于S
证明A+A·B=A A B S 1 1 1 1 0 1 0 1 0 0 0 0 A始终等于S
2.分配律 A·(B+C)=A·B+A·C 和 A+ (B·C)=(A+B)·(A+C)
A·(B+C)=R A B C R 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1
A·B+A·C=R A B C R 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 所以 A·(B+C)=A·B+A·C
3. 重叠律
同理
电路图:
四.异或
我们先列出异或的真值表
A | B | R |
0 | 0 | 0 |
1 | 0 | 1 |
0 | 1 | 1 |
1 | 1 | 0 |
找其中R = 1 行(图中绿色)
把这里的A和B写成逻辑与,如果是0写成"非"
得
再把它们逻辑或连接
得R =
电路图:
其实上图中的或门可以去掉,直接将两电路并联.