9.1 不等式
9.1.1 不等式及其解集
由上可知,在前面问题中,汽车要在12:00之前驶过A地,车速必须大于 75 km/h.
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集(solution set).求不等式的解集的过程叫做解不等式.
9.1.2 不等式的性质
一般地,不等式有以下性质:
不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
不等式的性质2 不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变.
不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.
9.2 一元一次不等式
可以发现,上述每个不等式都只含有一个未知数,并且未知数的次数是1.类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality in one unknown).
从上节我们知道,不等式
x-7>26
的解集是
x>33
这个解集是通过“不等式两边都加7,不等号的方向不变”而得到的,事实上,这相当于由x-7>26得x>26+7.这就是说,解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
一般地,利用不等式的性质,采取与解一元一次方程相类似的步骤,就可以求出一元一次不等式的解集.
9.2 一元一次不等式组
类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组(system of linear inequalities in one unknown),