3分钟tips:泛函中,什么是开映像定理?

在泛函分析中,开映射定理是一个基本的结果,它说明如果巴拿赫空间之间的连续线性算子是满射的,那么它就是一个开映射。更加精确地:该定理的证明用到了贝尔纲定理,X和Y的完备性都是十分重要的。如果仅仅假设X或Y是赋范空间,那么定理的结论就不一定成立。

假设给定一个算子T,则

  • T是开映象的定义:T将开集映射为开集
  • T连续定义:T关于开集的原象是开集

如果T可逆且是开映象,则T的逆映射是连续的,开映像定理就是讨论连续线性映射的逆映射什么时候是连续的

  • 逆算子定理:"完备空间"到完备空间的一个算子T,如果T是"连续线性"算子且可逆,则T的逆算子是连续的.

为了不牵扯到T的逆算子的存在性, 人们定义了开印象的概念. 

  • 开映象定理:完备空间到完备空间的一个算子T,如果T是连续线性算子且是满射,则T是开映象

可见, 在开映象定理的条件上再加上T是单射, 就是逆算子定理。关于“满足开映象定理的算子的范数”, 这里如果说的是算子的范数, 条件要求"T是连续线性算子", 即T是有界线性算子, 所以||T||有界. 除此似乎没有其他的性质了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵的猫.

小二,给客官上酒!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值