在泛函分析中,开映射定理是一个基本的结果,它说明如果巴拿赫空间之间的连续线性算子是满射的,那么它就是一个开映射。更加精确地:该定理的证明用到了贝尔纲定理,X和Y的完备性都是十分重要的。如果仅仅假设X或Y是赋范空间,那么定理的结论就不一定成立。
假设给定一个算子T,则
- T是开映象的定义:T将开集映射为开集
- T连续定义:T关于开集的原象是开集
如果T可逆且是开映象,则T的逆映射是连续的,开映像定理就是讨论连续线性映射的逆映射什么时候是连续的
- 逆算子定理:"完备空间"到完备空间的一个算子T,如果T是"连续线性"算子且可逆,则T的逆算子是连续的.
为了不牵扯到T的逆算子的存在性, 人们定义了开印象的概念.
- 开映象定理:完备空间到完备空间的一个算子T,如果T是连续线性算子且是满射,则T是开映象
可见, 在开映象定理的条件上再加上T是单射, 就是逆算子定理。关于“满足开映象定理的算子的范数”, 这里如果说的是算子的范数, 条件要求"T是连续线性算子", 即T是有界线性算子, 所以||T||有界. 除此似乎没有其他的性质了。