MATLAB: ode45 求解常微分方程

引入

ode45 是 MATLAB 中用于求解非刚性常微分方程(ODE)的数值方法。它基于 Runge-Kutta 方法,并具有自适应步长调整机制,能够在一定误差控制范围内高效地计算 ODE 的数值解。

下面我们通过这个包含详细注释的代码,一起学习一下这个函数的使用:

使用 ode45 求解非线性常微分方程并绘制数值解与精确解对比图

方程模型

我们考虑以下非线性常微分方程:

y ′ ′ = − y ′ + cos ⁡ ( t ) − 3 sin ⁡ ( t ) y'' = -y' + \cos(t) - 3 \sin(t) y′′=y+cos(t)3sin(t)

##初始条件

选择初始条件:
y ( 0.1 ) = cos ⁡ ( 0.1 ) + 2 sin ⁡ ( 0.1 ) y(0.1) = \cos(0.1) + 2 \sin(0.1) y(0.1)=cos(0.1)+2sin(0.1)
y ′

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算小屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值