时间序列

生成时间序列

本章首先介绍生成、操作时序数据的方法,对它们进行描述并画图,将它们分解成水平、趋
势、季节性和随机(误差)等四个不同部分。在此基础上,我们采用不同的统计模型对其进行预
测。将要介绍的方法包括基于加权平均的指数模型,以及基于附近数据点和预测误差间关联的自
回归积分移动平均( ARIMA)模型。我们还将介绍模型拟合和预测准确性的评价指标。最后,
本章将给出关于时间序列的更多参考书目,以便读者继续学习。

在 R 中生成时序对象

在R中分析时间序列的前提是我们将分析对象转成时间序列对象( time-series object),即R中
一种包括观测值、起始时间、终止时间以及周期(如月、季度或年)的结构。只有将数据转成时
间序列对象后,我们才能用各种时序方法对其进行分析、建模和绘图。

时序的平滑化和季节性分解

正如对横截面数据集分析与建模的第一步是描述性统计和画图一样,对时序数据建立复杂模
型之前也需要对其进行描述和可视化。在本节中,我们将对时序进行平滑化以探究其总体趋势,
并对其进行分解以观察时序中是否存在季节性因素。

指数预测模型

指数模型是用来预测时序未来值的最常用模型。这类模型相对比较简单,但是实践证明它们
的短期预测能力较好。不同指数模型建模时选用的因子可能不同。比如单指数模型( simple/single
exponential model)拟合的是只有常数水平项和时间点i处随机项的时间序列,这时认为时间序列
不存在趋势项和季节效应; 双指数模型( double exponential model;也叫Holt指数平滑, Holt
exponential smoothing)拟合的是有水平项和趋势项的时序; 三指数模型( triple exponential model;
也叫Holt-Winters指数平滑, Holt-Winters exponential smoothing)拟合的是有水平项、趋势项以及
季节效应的时序。

ARIMA 预测模型

在ARIMA预测模型中,预测值表示为由最近的真实值和最近的预测误差组成的线性函数。
ARIMA比较复杂,在本节中,我们只讨论对非季节性时序建立ARIMA模型的问题。
在讨论ARIMA模型前,我们首先要定义一系列名词,包括滞后阶数( lag)、自相关
( autocorrelation)、偏自相关( partial autocorrelation)、 差分( differencing)以及平稳性( stationarity)。

下一小节中我们将详细介绍这些名词。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算小屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值