时间序列(Time Series)是按照时间顺序排列的一组数据点,通常用于分析和预测随时间变化的趋势、周期性和随机波动。时间序列分析在经济学、金融学、气象学、工程学、生物学等领域有广泛应用。
时间序列的基本特征
-
趋势(Trend):时间序列在长期内呈现的上升或下降的总体方向。
-
季节性(Seasonality):时间序列在固定时间间隔内重复出现的模式,通常与季节、月份、星期等周期性因素相关。
-
周期性(Cyclical):时间序列中较长时间间隔内出现的波动,通常与经济周期、商业周期等有关。
-
随机波动(Irregular/Random Fluctuations):时间序列中无法解释的随机波动,通常由偶然因素引起。
时间序列分析的主要方法
-
描述性分析:
-
移动平均(Moving Average):通过计算一定时间窗口内的平均值来平滑数据,减少随机波动。
-