时间序列(Time Series)

时间序列(Time Series)是按照时间顺序排列的一组数据点,通常用于分析和预测随时间变化的趋势、周期性和随机波动。时间序列分析在经济学、金融学、气象学、工程学、生物学等领域有广泛应用。

时间序列的基本特征

  1. 趋势(Trend):时间序列在长期内呈现的上升或下降的总体方向。

  2. 季节性(Seasonality):时间序列在固定时间间隔内重复出现的模式,通常与季节、月份、星期等周期性因素相关。

  3. 周期性(Cyclical):时间序列中较长时间间隔内出现的波动,通常与经济周期、商业周期等有关。

  4. 随机波动(Irregular/Random Fluctuations):时间序列中无法解释的随机波动,通常由偶然因素引起。

时间序列分析的主要方法

  1. 描述性分析

    • 移动平均(Moving Average):通过计算一定时间窗口内的平均值来平滑数据,减少随机波动。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

109702008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值