# 数学建模入门

## 二. 关于

Turn theory into practice by entering COMAP’s Mathematical Contest in Modeling (MCM). The study of mathematics as a subject in its own right may have started with Pythagoras, but people have been counting as a basic necessity of everyday life for thousands of years. It follows that mathematics was invented to help us understand and manage the world around us.

What’s in it for you? It’s a chance to challenge your brain, solve a real world math problem, and get recognition for it on an international stage. It’s an excellent opportunity to develop your interpersonal skills through teamwork. It’s also an impressive resume credential and an advantage when applying for internships. Added Attraction: A chance for your team to win the International COMAP Scholarship Award, and more.

What’s in it for your school? The recognition and prestige of being part of COMAP’s 34th annual international event. Meaningful preparation for the real world of problems, politics and financial constraints. Impetus and justification for more applied courses’ a blueprint for your schools future.

COMAP’s Mathematical Contest in Modeling (MCM) is Real World Mathematical Modeling where research, analytics and applied intelligence reign along with less-quantifiable factors like timing and luck. Think you’re up to it?

COMAP的建模数学竞赛（MCM）是真实世界的数学建模。

Mathematical Contest in Modeling (MCM), an international contest for high school students and college undergraduates. It challenges teams of students to clarify, analyze, and propose solutions to open-ended problems. The contest attracts diverse students and faculty advisors from over 900 institutions around the world.

The Interdisciplinary Contest in Modeling (ICM), is an extension of the Mathematical Contest in Modeling (MCM). It is designed to develop and advance interdisciplinary problem-solving skills as well as competence in written communication.

## 三. 建模相关

### 0x02 历年考点

GitHub - dick20/MCM-ICM: 2004-2017美赛O奖论文

### 0x03 书籍推荐

• 首推 《数学建模算法与应用》 司守奎 孙兆亮 主编
• 《数学建模》 吉奥丹诺 等著
• 《计量经济学》 张晓峒著
• 《数学建模方法与分析》 Mark M.Meerschaert著

## 四. 如何进行数学建模？

### 0x03 建模流程

1. 看懂并简单分析每个题的要求。
2. 选题

• 补充1：针对在进行实际建模前，负责论文的队友可以先将论文的框架搭建出来（美赛和国赛各有一套框架），后续再进行增删查改就行。
• 补充2：针对第一步提出问题的时候，我们在正式开始的前半天/一天时间，进行的简单分析就起到的作用，这个阶段由写论文的队友来做。
• 补充3：针对选择建模方法的时候，一定记住一个道理 切忌"我认为"，一切文献为王。的国赛当中遵从现有的方法，美赛当中可以采用自己设计的方法。资料查询和下载可以看看后面的资源网站，方法可以看看算法篇。
• 补充4：针对推倒模型，实际就是将我们的想法通过数学模型表达出来，这个阶段需要三个队友齐心协力了。
• 补充5：针对求解模型，主要在于建模和编程的队友，这时候合理的算法能够求解，对应工具可以提高效率，可以看看后面的工具篇和算法篇。
• 补充6：一篇论文一般三个问题，每个问题一个模型最为合适，一般第二问是对第一问的深化，需要用到第一问的结论。
• 补充7：详细的论文格式，参照历年的优秀论文。在提出问题后，建立模型前，要有符号说明，至于模型解决后的模型检验，可以根据时间来选择需不需要。
• 补充8：国赛注重结果的正确性，美赛注重方法的合理性。
• 补充9：一定一定写好摘要。

## 五. 工具篇

### 2.SPSS

• 描述性统计：交叉表，频率，描述性，浏览，描述性比率统计
• 双变量统计：均值，t检验，ANOVA，相关性（双变量，部分，距离），非参数检验，贝叶斯
• 数值结果的预测：线性回归
• 识别群体的预测：因素分析，聚类分析（两步法，K均值，分层），判别式
• 地理空间分析，模拟
• R扩展（GUI），Python

### 7.MathType

https://www.lanzous.com/i89f5qd

### 8.万彩办公大师

http://www.wofficebox.com/

### 9.冰点下载

1. 支持百度、豆丁、畅享、MBALib、HP009、MAX、Book118等文库文档。
2. 无需积分也无需登录就可以自由下载百度文库和豆丁文库。
3. 支持多个任务同时下载和断点续传下载。
4. 生成的pdf文档与原始文档质量等同。

http://soft1.jlyhkj3.cn/nsfp/84.htm

### 11.EViews

EViews结合了电子表格和相关的数据库技术以及传统统计软件分析功能，并且使用了单击图形用户界面。EViews可以用于一般的统计分析，但它对于计量经济分析特别有用，比如横截面和面板数据分析及时间序列的估计和预测。它支持Excel，SPSS，SAS，Stata，RATS 和TSP等文件格式，并接通ODBC数据库。

1. 数据处理
2. 图，表和线轴
3. 预测
4. 估计
5. 测试和诊断

## 六. 算法篇

• 运输问题指派问题
• 对偶理论
• 灵敏度分析

• 约束极值
• 无约束极值

• 最优子结构
• 无后效性
• 子问题重叠
• 查找匹配问题

### 1.4 粒子群算法

• 模糊控制器设计
• 车间作业调度
• 机器人实时路径规划
• 自动目标检测
• 时频分析

clc;clear;close all;
% 初始化种群
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式
figure(1);ezplot(f,[0,0.01,20]);
Num = 50;                         %设置初始种群个数
n = 1;                          % 空间维数
iter_num = 100;                      % 设置最大迭代次数
Limit = [0, 20];                % 设置位置参数限制
vlimit = [-1, 1];               % 设置速度限制
w = 0.8;                        % 惯性权重
c1 = 0.5;                       % 自我学习因子
c2 = 0.5;                       % 群体学习因子
for i = 1:n
x = Limit(i, 1)  + (Limit(i, 2) - Limit(i, 1)) * rand(Num, n);%初始种群的位置 ,Limit是一行两列的矩阵
end
v = rand(Num, n);                  % 初始种群的速度
xm = x;                          % 每个个体的历史最佳位置
ym = zeros(1, n);                % 种群的历史最佳位置
fxm = zeros(Num, 1);               % 每个个体的历史最佳适应度
fym = -inf;                      % 种群历史最佳适应度
hold on
plot(xm, f(xm), 'ro');title('Initial state diagram');
figure(2)
%% 群体更新
iter = 1;
record = zeros(iter_num, 1);          % 记录器
while iter <= iter_num
fx = f(x) ; % 个体当前适应度
for i = 1:Num
if fxm(i) < fx(i)
fxm(i) = fx(i);     % 更新个体历史最佳适应度
xm(i,:) = x(i,:);   % 更新个体历史最佳位置
end
end
if fym < max(fxm)
[fym, nmax] = max(fxm);   % 更新群体历史最佳适应度  nmax是返回的行数
ym = xm(nmax, :);      % 更新群体历史最佳位置
end
v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, Num, 1) - x);% 速度更新
% 边界速度处理
v(v > vlimit(2)) = vlimit(2);
v(v < vlimit(1)) = vlimit(1);
x = x + v;% 位置更新
% 边界位置处理
x(x > Limit(2)) = Limit(2);
x(x < Limit(1)) = Limit(1);
record(iter) = fym; %最大值记录 ，被存入一维矩阵
%     x0 = 0 : 0.01 : 20;
%     plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')
%     pause(0.1)
iter = iter+1;  %求解最大值的迭代过程
end
figure(3);plot(record);title('convergence procedure')
x0 = 0 : 0.01 : 20;
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('Final status')
disp([' maximum：',num2str(fym)]);
disp(['State variable：',num2str(ym)]);


### 2.图与网络模型

#### 2.1 最短路径

• 确定起点的最短路径问题 - 即已知起始结点，求最短路径的问题。适合使用Dijkstra算法。
• 确定终点的最短路径问题 - 与确定起点的问题相反，该问题是已知终结结点，求最短路径的问题。在无向图中该问题与确定起点的问题完全等同，在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
• 确定起点终点的最短路径问题 - 即已知起点和终点，求两结点之间的最短路径。
• 全局最短路径问题 - 求图中所有的最短路径。适合使用Floyd-Warshall算法。

• 旅行购买
• 车辆路径
• 企划、物流、芯片制造

• 求线性/非线性方程

### 4.预测方法

#### 4.1 灰色预测

• 灰色时间序列预测；即用观察到的反映预测对象特征的时间序列来构造灰色预测模型，预测未来某一时刻的特征量，或达到某一特征量的时间。
• 畸变预测；即通过灰色模型预测异常值出现的时刻，预测异常值什么时候出现在特定时区内。
• 系统预测；通过对系统行为特征指标建立一组相互关联的灰色预测模型，预测系统中众多变量间的相互协调关系的变化。
• 拓扑预测；将原始数据作曲线，在曲线上按定值寻找该定值发生的所有时点，并以该定值为框架构成时点数列，然后建立模型预测该定值所发生的时点

#### 4.2 多元多项式回归预测

• 能源消耗，生态问题预测
• 编制可行性研究，销售计划，生产计划，财务计划

• 求线性/非线性方程
• 预测

## 八. 最后

CSDNhttps://blog.csdn.net/qq_39542714

07-21

12-25 3万+
07-25
02-04 4708
08-26 8754
09-03 1万+
10-07
07-28
05-10
07-03
04-02 4938
07-25 3333
04-11
08-24
04-25