屏幕指纹识别

从2018年开始,很多国产手机已经开始用上了屏幕指纹识别,目前屏幕指纹主要有两种技术:光学指纹和超声波指纹。那么问题来了,光感指纹和超声波指纹有什么区别,哪个更好呢?

光学指纹

光学指纹识别是一种十分成熟的技术,原理很简单,主要靠光线反射来探测指纹回路。

优点:技术成熟,成本低。外围电路少,供应商多:新思、汇顶、三星等。

缺点:只支持OLED屏幕,不支持LCD屏幕,识别率一般,安全性较低。使用OLED自发光作为光源,图像传感器接受到手指反射生产指纹图像,OLED屏不可避免老化问题,使用一两年后识别率下降。另外,手指脏了或者在阳光下,都会影响识别率。安全性较低,使用复制指纹可解锁。

超声波指纹

目前采用超声波指纹的手机很少,代表机型三星S10系列。原理:利用超声波的反射得到指纹图像。

优点:识别率高,安全性高,无需亮屏。超声波穿透能力强,不受光线影响,而且抗污渍的能力较高,手指湿了、脏了也能识别。

缺点:成本高,供应商单一。目前只有高通有量产能力,而且超声波指纹需要高压驱动,电路复杂,成本比光线指纹高不少。

总结:

通过上面对比,超声波指纹比光感指纹好很多,但由于结构复杂、供应商少,导致成本下不来,一般只用在高端手机。

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方法及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型变流器模型的建立。文中强调了变流器控制算法的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压电流,确保电流电压波形的良好特性。此外,文章还讨论了模型中的关键技术挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赋能大师兄

读后有收获可以请作者喝咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值