Anaconda-pytorch-pycharm安装配置

使用Anaconda安装pytorch以及开发环境搭建(pycharm)

Anaconda安装

亲测好用:https://blog.csdn.net/a28465a/article/details/106029107?utm_source=app

Anaconda Python3.6 version安装

在安装完Anaconda之后,打开Anaconda navigator,创建一个环境来放pytorch,如下图:
在这里插入图片描述在这里插入图片描述
但是由于我在安装anaconda的时候默认的是Python3.7,所以我找不到Python3.6的版本(你们也可以创建Python3.7的pytorch,应该都可以)。这里我选择在Anaconda Prompt命令行进行创建环境,结果是一样的。如下图:![Al在这里插入图片描述

创建完环境之后,打开anaconda prompt。先激活环境:activate pytorch_envs36。然后分别下载和安装torch和torchvision。 各个版本的torch和torchvision链接如下(这里我使用的是torch 1.1.0+torchvision 0.3.0)【注意:一定要选择相匹配的版本,不然安装不成功但是后来使用的时候发现torchvision的版本可能是太高,我就又换成了torchvision 0.2.2。
在这里插入图片描述
下载完torch和torchvision之后, 详细安装教程

安装完成之后,为了测试自己安装的是否成功,可以打开Anaconda navigator中的Jupyter Notebook,新建一个Python文件,然后测试代码:
from future import print_function
#import os
#os.environ[“KMP_DUPLICATE_LIB_OK”]=“TRUE”
from itertools import count
import numpy as np
import torch
import torch.autograd

import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

random_state = 5000
torch.manual_seed(random_state)
poly_degree = 4
W_target = torch.randn(poly_degree, 1) * 5
b_target = torch.randn(1) * 5

def make_features(x):
“”"
创建一个特征矩阵结构为[x, x^2, x^3, x^4].
“”"
x = x.unsqueeze(1)
return torch.cat([x ** i for i in range(1, poly_degree + 1)], 1)

def f(x):
“”“近似函数”""
return x.mm(W_target) + b_target[0]

def poly_desc(W, b):
“”“生成多项式描述内容”""
result = 'y = ’
for i, w in enumerate(W):
result += '{:+.2f} x^{} '.format(w, len(W) - i)
result += ‘{:+.2f}’.format(b[0])
return result

def get_batch(batch_size=32):
“”“创建类似(x, f(x))批数据”""
random = torch.from_numpy(np.sort(torch.randn(batch_size)))
x = make_features(random)
y = f(x)
return Variable(x), Variable(y)

#声明模型
fc = torch.nn.Linear(W_target.size(0), 1)

for batch_idx in count(1):
# 获取数据
batch_x, batch_y = get_batch()
# 重制求导
fc.zero_grad()

# 前向传播
output = F.smooth_l1_loss(fc(batch_x), batch_y)
loss = output.item()

# 后向传播
output.backward()

# 应用导数
for param in fc.parameters():
    param.data.add_(-0.1 * param.grad.data)

# 停止条件
if loss < 1e-3:
    plt.cla()
    plt.scatter(batch_x.data.numpy()[:, 0], batch_y.data.numpy()[:, 0], label='real curve', color='b')
    plt.plot(batch_x.data.numpy()[:, 0], fc(batch_x).data.numpy()[:, 0], label='fitting curve', color='r')
    plt.title('$Y=W^T*X+b$')
    plt.legend()
    plt.savefig('1.png')
    plt.show()
    break

print(‘Loss: {:.6f} after {} batches’.format(loss, batch_idx))
print(’> Learned function:\t’ + poly_desc(fc.weight.data.view(-1), fc.bias.data))
print(’
> Actual function:\t’ + poly_desc(W_target.view(-1), b_target))
`
代码第二行和第三行注释部分,如果没有这两行代码,不知道什么原因,我的代码会服务器断开,然后我在pycharm中运行,会出现错误OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized,如果加上则错误消失。而且注意:from future import print_function语句前面一定不要有任何语句,否则会出错!!!

嵌入开发工具Pycharm

创建新project:在这里插入图片描述
其中上面的箭头一定要改,下面的箭头选择如下:在这里插入图片描述
然后在该工程下面新建python文件即可。

由于第一次写博客,并且对其中一些问题并未深入研究,部分写的有点儿乱,敬请谅解。

  • 0
    点赞
  • 4
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YY吖~

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值