使用Anaconda安装pytorch以及开发环境搭建(pycharm)
Anaconda安装
亲测好用:https://blog.csdn.net/a28465a/article/details/106029107?utm_source=app
Anaconda Python3.6 version安装
在安装完Anaconda之后,打开Anaconda navigator,创建一个环境来放pytorch,如下图:
但是由于我在安装anaconda的时候默认的是Python3.7,所以我找不到Python3.6的版本(你们也可以创建Python3.7的pytorch,应该都可以)。这里我选择在Anaconda Prompt命令行进行创建环境,结果是一样的。如下图:![Al
创建完环境之后,打开anaconda prompt。先激活环境:activate pytorch_envs36。然后分别下载和安装torch和torchvision。 各个版本的torch和torchvision链接如下(这里我使用的是torch 1.1.0+torchvision 0.3.0)【注意:一定要选择相匹配的版本,不然安装不成功】但是后来使用的时候发现torchvision的版本可能是太高,我就又换成了torchvision 0.2.2。
下载完torch和torchvision之后, 详细安装教程
安装完成之后,为了测试自己安装的是否成功,可以打开Anaconda navigator中的Jupyter Notebook,新建一个Python文件,然后测试代码:
from future import print_function
#import os
#os.environ[“KMP_DUPLICATE_LIB_OK”]=“TRUE”
from itertools import count
import numpy as np
import torch
import torch.autograd
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
random_state = 5000
torch.manual_seed(random_state)
poly_degree = 4
W_target = torch.randn(poly_degree, 1) * 5
b_target = torch.randn(1) * 5
def make_features(x):
“”"
创建一个特征矩阵结构为[x, x^2, x^3, x^4].
“”"
x = x.unsqueeze(1)
return torch.cat([x ** i for i in range(1, poly_degree + 1)], 1)
def f(x):
“”“近似函数”""
return x.mm(W_target) + b_target[0]
def poly_desc(W, b):
“”“生成多项式描述内容”""
result = 'y = ’
for i, w in enumerate(W):
result += '{:+.2f} x^{} '.format(w, len(W) - i)
result += ‘{:+.2f}’.format(b[0])
return result
def get_batch(batch_size=32):
“”“创建类似(x, f(x))批数据”""
random = torch.from_numpy(np.sort(torch.randn(batch_size)))
x = make_features(random)
y = f(x)
return Variable(x), Variable(y)
#声明模型
fc = torch.nn.Linear(W_target.size(0), 1)
for batch_idx in count(1):
# 获取数据
batch_x, batch_y = get_batch()
# 重制求导
fc.zero_grad()
# 前向传播
output = F.smooth_l1_loss(fc(batch_x), batch_y)
loss = output.item()
# 后向传播
output.backward()
# 应用导数
for param in fc.parameters():
param.data.add_(-0.1 * param.grad.data)
# 停止条件
if loss < 1e-3:
plt.cla()
plt.scatter(batch_x.data.numpy()[:, 0], batch_y.data.numpy()[:, 0], label='real curve', color='b')
plt.plot(batch_x.data.numpy()[:, 0], fc(batch_x).data.numpy()[:, 0], label='fitting curve', color='r')
plt.title('$Y=W^T*X+b$')
plt.legend()
plt.savefig('1.png')
plt.show()
break
print(‘Loss: {:.6f} after {} batches’.format(loss, batch_idx))
print(’> Learned function:\t’ + poly_desc(fc.weight.data.view(-1), fc.bias.data))
print(’> Actual function:\t’ + poly_desc(W_target.view(-1), b_target))
`
代码第二行和第三行注释部分,如果没有这两行代码,不知道什么原因,我的代码会服务器断开,然后我在pycharm中运行,会出现错误OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized,如果加上则错误消失。而且注意:from future import print_function语句前面一定不要有任何语句,否则会出错!!!
嵌入开发工具Pycharm
创建新project:
其中上面的箭头一定要改,下面的箭头选择如下:
然后在该工程下面新建python文件即可。
由于第一次写博客,并且对其中一些问题并未深入研究,部分写的有点儿乱,敬请谅解。