动态规划解最长公共子序列问题

13 篇文章 1 订阅

1 最长公共子序列问题概述

1.1 问题定义

序列 A = { a 1 , a 2 , . . . , a m } A=\{a_1,a_2,...,a_m\} A={a1,a2,...,am},序列 B = { b 1 , b 2 , . . . , b n } B=\{b_1,b_2,...,b_n\} B={b1,b2,...,bn}。如果存在一个序列 C = { c 1 , c 2 , . . . , c k } C=\{c_1,c_2,...,c_k\} C={c1,c2,...,ck},其中 c i ∈ A , B c_i \in A,B ciA,B ( i = 1 , 2 , . . . , k ) (i=1,2,...,k) (i=1,2,...,k),且 c 1 , c 2 , . . . , c k c_1,c_2,...,c_k c1,c2,...,ck A , B A,B A,B中出现的先后顺序要保持一致,则称序列 C C C是序列 A A A和序列 B B B的公共子序列。

要求找出序列 A A A和序列 B B B的最长的公共子序列。

1.2 举个栗子

序列 A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3},序列 B = { 2 , 3 , 4 } B=\{2,3,4\} B={2,3,4}

序列 A A A的子序列有: { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } \{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\} {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}

序列 B B B的子序列有: { 2 } , { 3 } , { 4 } , { 2 , 3 } , { 2 , 4 } , { 3 , 4 } , { 2 , 3 , 4 } \{2\},\{3\},\{4\},\{2,3\},\{2,4\},\{3,4\},\{2,3,4\} {2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}

序列 A A A B B B的公共子序列有: { 2 } , { 3 } , { 2 , 3 } \{2\},\{3\},\{2,3\} {2},{3},{2,3}

所以序列 A A A B B B的最长公共子序列是: { 2 , 3 } \{2,3\} {2,3}

2 动态规划求解最长公共子序列问题

序列 A = { a 1 , a 2 , . . . , a m } A=\{a_1,a_2,...,a_m\} A={a1,a2,...,am},序列 B = { b 1 , b 2 , . . . , b n } B=\{b_1,b_2,...,b_n\} B={b1,b2,...,bn}

假设序列 C = { c 1 , c 2 , . . . , c k } C=\{c_1,c_2,...,c_k\} C={c1,c2,...,ck}是两个序列的最长公共子序列,则有以下推论:

  • 如果 a m = b n a_m=b_n am=bn,则 c k = a m = b n c_k=a_m=b_n ck=am=bn,且序列 { c 1 , c 2 , . . . , c k − 1 } \{c_1,c_2,...,c_{k-1}\} {c1,c2,...,ck1}是序列 { a 1 , a 2 , . . . , a m − 1 } \{a_1,a_2,...,a_{m-1}\} {a1,a2,...,am1}和序列 { b 1 , b 2 , . . . , b n − 1 } \{b_1,b_2,...,b_{n-1}\} {b1,b2,...,bn1}的最长公共子序列
  • 如果 a m ≠ b n a_m\neq b_n am=bn,且 c k ≠ a m c_k\neq a_m ck=am,则 c k = b n c_k=b_n ck=bn,序列 { c 1 , c 2 , . . . , c k } \{c_1,c_2,...,c_{k}\} {c1,c2,...,ck}是序列 { a 1 , a 2 , . . . , a m − 1 } \{a_1,a_2,...,a_{m-1}\} {a1,a2,...,am1}和序列 { b 1 , b 2 , . . . , b n } \{b_1,b_2,...,b_{n}\} {b1,b2,...,bn}的最长公共子序列
  • 如果 a m ≠ b n a_m\neq b_n am=bn,且 c k ≠ b n c_k\neq b_n ck=bn,则 c k = a m c_k=a_m ck=am,序列 { c 1 , c 2 , . . . , c k } \{c_1,c_2,...,c_{k}\} {c1,c2,...,ck}是序列 { a 1 , a 2 , . . . , a m } \{a_1,a_2,...,a_{m}\} {a1,a2,...,am}和序列 { b 1 , b 2 , . . . , b n − 1 } \{b_1,b_2,...,b_{n-1}\} {b1,b2,...,bn1}的最长公共子序列

C [ i , j ] C[i,j] C[i,j]为序列 { a 1 , a 2 , . . . , a i } \{a_1,a_2,...,a_i\} {a1,a2,...,ai}和序列 { b 1 , b 2 , . . . , b j } \{b_1,b_2,...,b_j\} {b1,b2,...,bj}的最长公共子序列(LCS)的长度。根据上述推论,可以得到 C [ i , j ] C[i,j] C[i,j]的递推公式:

C [ i , j ] = { 0 i = 0 或 j = 0 C [ i − 1 , j − 1 ] + 1 i , j > 0 , x i = y i m a x { C [ i , j − 1 ] , C [ i − 1 , j ] } x , j > 0 , x i ≠ y j C[i,j]=\left\{ \begin{array}{lcl} 0 & &{i=0 或 j=0}\\ C[i-1,j-1]+1 & &{i,j>0,x_i=y_i}\\ max\{C[i,j-1],C[i-1,j]\} & &{x,j>0,x_i\neq y_j} \end{array} \right. C[i,j]=0C[i1,j1]+1max{C[i,j1],C[i1,j]}i=0j=0i,j>0,xi=yix,j>0,xi=yj

在求最长公共子序列长度矩阵 C C C的时候,需要借助一个辅助矩阵 B B B来记录求得 C [ i , j ] C[i,j] C[i,j]的过程:
B [ i , j ] = { 0 A [ i ] = B [ i ] 1 A [ i ] ≠ B [ i ] , C [ i − 1 , j ] > C [ i , j − 1 ] 2 A [ i ] ≠ B [ i ] , C [ i − 1 , j ] < C [ i , j − 1 ] 3 A [ i ] ≠ B [ i ] , C [ i − 1 , j ] = C [ i , j − 1 ] B[i,j]=\left\{ \begin{array}{lcl} 0 & &{A[i]=B[i]}\\ 1 & &{A[i]\neq B[i],C[i-1,j]>C[i,j-1]}\\ 2 & &{A[i]\neq B[i],C[i-1,j]<C[i,j-1]}\\ 3 & &{A[i]\neq B[i],C[i-1,j]=C[i,j-1]} \end{array} \right. B[i,j]=0123A[i]=B[i]A[i]=B[i],C[i1,j]>C[i,j1]A[i]=B[i],C[i1,j]<C[i,j1]A[i]=B[i],C[i1,j]=C[i,j1]

在求得最长公共子序列 C C C以及辅助矩阵 B B B之后,即可使用回溯法来得到所有的最长公共子序列。

3 实现代码

3.1 LCS.h

# ifndef _LCS_H
# define _LCS_H
# include <vector>
using namespace std;

/**
 *  序列类
 */
class Seq{
public:
    //数据指针
    int* data=nullptr;
    //数据长度
    int len=0;
    Seq(int* data,int len){
        this->data=data;
        this->len=len;
    }
};

// LCS类
class LCS{
private:
    //最长公共子序列长度矩阵
    int** C=nullptr;
    //辅助矩阵
    int** src=nullptr;

    //使用动态规划方法计算C矩阵和src矩阵
    void writeTable(Seq* seq1,Seq* seq2);
    //使用回溯方法来得到所有的最长公共子序列
    void createSubSeq(Seq* seq1,vector<int>lcs , int i,int j,int MaxLen,vector<vector<int>>&LcsSet);

public:

    /**
     * 对外的接口
     * 输入是两个序列
     * 输出是0-n条最长公共子序列
     */ 
    vector<vector<int>> getLCS(Seq* seq1,Seq* seq2);

};
#endif

3.2 LCS.cpp

# include "LCS.h"
#include <cstdio>
# include <vector>
#include <algorithm>

using namespace std;


/**
 * 动态规划法求最长公共子序列长度矩阵C以及辅助矩阵
 * 输入是两个序列
*/
void LCS::writeTable(Seq* seq1,Seq* seq2){
    // 此处有一个小技巧,扩展了一行一列,由于后面会出现C[i-1][j] C[i][j-1],扩展一行一列可以避免下标出现-1
    int len1=seq1->len+1;
    int len2=seq2->len+1;
    //分配内存
    C=new int*[len1];
    src = new int*[len1];
    for(int i=0;i<len1;i++){
        C[i] = new int[len2];
        src[i] = new int[len2];
    }
    //计算C矩阵和辅助矩阵src
    for(int i=0;i<len1;i++){
        for(int j=0;j<len2;j++){
            if(i==0||j==0){ //自行扩展的一行一列,无意义
                C[i][j]=0;   //无实际用处
                src[i][j]=0; //无实际用处
            }else if(seq1->data[i-1]==seq2->data[j-1]){ 
                C[i][j]=C[i-1][j-1]+1;    
                src[i][j]=0; 
            }else{ 
                if(C[i-1][j]>C[i][j-1]){ 
                    C[i][j]=C[i-1][j];
                    src[i][j]=1;
                }else if(C[i-1][j]<C[i][j-1]){
                    C[i][j]=C[i][j-1];
                    src[i][j]=2;
                }else{
                    C[i][j]=C[i][j-1];
                    src[i][j]=3; 
                }
            }
        }
    }    
}

/**
 * 判断子序列是否和已有的子序列重复
 * 输入:LcsSet为已有的子序列集合,lcs为待加入的子序列
 * 输出:若重复返回true,否则false
 */
bool isRepeat(vector<vector<int>>LcsSet,vector<int>lcs){
    int flag=0;
    for(int i=0;i<LcsSet.size();i++){
        if(lcs.size()!=LcsSet.at(i).size()){
            return true;
        }
        for(int j=0;j<lcs.size();j++){
            if(lcs.at(j)!=LcsSet.at(i).at(j)){
               flag=1; 
            }
        }
        if(flag==0){
            return true;
        }
        flag=0;
    }
    return false;
}

/**
 * 使用回溯法来找出所有的最长公共子序列,此处使用辅助矩阵src完成,用到递归编程技巧
 * seq1是第一个序列,与C[i][j]的i对应;lcs是最长公共子序列;i,j是下标;Maxlen是最长公共子序列的长度;LcsSet是最长公共子序列的集合
 */
void LCS::createSubSeq(Seq* seq1,vector<int>lcs , int i,int j,int MaxLen,vector<vector<int>>&LcsSet){
    if(i==0||j==0){
        if(lcs.size()==MaxLen&&MaxLen>0){//已经回溯完成
            reverse(lcs.begin(),lcs.end()); //翻转一下
            if(!isRepeat(LcsSet,lcs)){ //去重
                LcsSet.push_back(lcs); //加入
            }
        }
        return;
    }
    switch (src[i][j]){
    case 0://左上角
        lcs.push_back(seq1->data[i-1]); //seq1对应i
        createSubSeq(seq1,lcs,i-1,j-1,MaxLen,LcsSet);
        break;
    case 1://向上
        createSubSeq(seq1,lcs,i-1,j,MaxLen,LcsSet);
        break;
    case 2://左
        createSubSeq(seq1,lcs,i,j-1,MaxLen,LcsSet);
        break;
    case 3://左右皆可
        createSubSeq(seq1,lcs,i-1,j,MaxLen,LcsSet);
        createSubSeq(seq1,lcs,i,j-1,MaxLen,LcsSet);
        break;
    default:
        break;
    }
}


vector<vector<int>> LCS::getLCS(Seq* seq1,Seq* seq2){
    if(seq1->len==0||seq2->len==0||seq1->data==nullptr||seq2->data==nullptr){
        return vector<vector<int>>();
    }
    writeTable(seq1,seq2);

    vector<int> lcs;
    vector<vector<int>> LcsSet;
    createSubSeq(seq1,lcs,seq1->len,seq2->len,C[seq1->len][seq2->len],LcsSet);

    return LcsSet;
}

3.3 test.cpp

#include "LCS.h"
#include <cstdio>
#include <vector>
using namespace std;


void test1(){
    LCS* lcs = new LCS();
    
    Seq seq1 = Seq(new int[7]{1,8,2,3,7,8,2},7);
    Seq seq2 = Seq(new int[9]{3,5,7,4,8,6,7,8,2},9);
    vector<vector<int>> LcsSet= lcs->getLCS(&seq1,&seq2);
    printf("nums of lcs : %d\n",LcsSet.size());
    for(int i=0;i<LcsSet.size();i++){
        for(int j=0;j<LcsSet.at(i).size();j++){
            printf("%d ",LcsSet.at(i).at(j));
        }
        printf("\n");
    }
}

int main(){
    test1();
    return 0;
}

3.4 Makefile

FLAG= -std=c++11 
LIBS= 

act:test.o  LCS.o
	g++ -o act test.o LCS.o $(FLAG) $(LIBS)


test.o:test.cpp 
	g++ -c test.cpp  $(FLAG)

LCS.o:LCS.cpp LCS.h
	g++ -c LCS.cpp $(FLAG)

4 测试结果

在这里插入图片描述

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一朝英雄拔剑起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值