- 博客(216)
- 收藏
- 关注

原创 SIMON 32/64加密电路的实现(System Verilog)
SIMON加密算法的分组长度、密钥长度以及必要的参数配置如下图:本次需要实现的是SIMON 32/64,即分组长度2n=32,密钥长度mn=64,需要进行32轮加密。
2024-02-26 23:23:07
3305
1
原创 C++命名空间、内联与捕获
创建一个新的头文件,比如"square.h"在main.c中引用该头文件:#include "square.h"//自己定义的.h头文件需要用双引号在"square.h"头文件中进行编码在main函数中调用该命名空间,具体有两种调用方式方式一int main()int wid=10;int len=5;return 0;方式二在main函数前声明使用的命名空间,适用于小型项目int main()int wid=10;int len=5;return 0;
2025-05-07 12:39:22
1137
1
原创 mpz_t类型数据使用完一定要clear吗?如果不clear会怎样?
清理mpz_t变量是必要的,尤其是在大型程序或长时间运行的程序中。虽然在某些简单程序中不清理可能不会立即导致问题,但为了避免潜在的内存泄漏和资源管理问题,建议始终在使用完mpz_t变量后调用mpz_clear。
2025-02-25 11:46:24
354
1
原创 GMP库中,mpz_t类型的数据如何比较大小?
在GMP库中,mpz_t类型的数据用于表示任意精度的整数。比较两个mpz_t类型数据的大小可以通过GMP提供的比较函数来完成。这些函数会返回一个整数值,表示两个数之间的大小关系。
2025-02-25 11:17:45
318
原创 在VS2022中使用GMP库
GMP库是处理大数运算的强大工具,适用于密码学、科学计算等领域。使用时需要注意内存管理和线程安全,合理选择数据类型和函数以优化性能。
2025-02-24 15:32:02
1277
原创 绕组识别标签规范
需要标注的工具、器材图像中文名称标签名称od脱模剂watering can2铁铲shovel1记号笔bluepen/whitepen6纸质标签label3钢尺scale5玻璃纤维带(卷)glass fiber roll红色网格布red grid4白色网格布whitegrid11无纺布条无纺布片fabric玻璃纤维带(条)glass fiber tape12
2024-12-24 20:04:46
285
原创 1. 机器学习基本知识(5)——练习题(参考答案)
模型在训练集的其余部分上进行训练,并在训练-开发集和验证集上进行评估。如果它在训练集和训练-开发集上都表现良好,但在验证集上表现不佳,那么训练数据与验证+测试数据之间可能存在显著的数据不匹配,你应该尝试改进训练数据,使其更接近验证+测试数据。我们通常通过最小化一个代价函数来训练这样的系统,该函数衡量系统在训练数据上进行预测的表现有多差,如果模型进行了正则化,还会加上模型复杂性的惩罚。如果你使用测试集来调整超参数,你冒着过拟合测试集的风险,你测量的泛化错误将会是乐观的(你可能推出的模型表现比你预期的要差)。
2024-12-12 22:09:37
835
1
原创 1. 机器学习基本知识(5)——练习题(1)
对于书本内容的回答,将优先寻找书本内容作为答案进行回答。书本内容回答完毕后,将对问题进行补充回答,上面分割线作为两个答案的分界。回答完一个问题,将用以下的100%长实线分割线来作为两个问题的分界。本书定义:机器学习是一门通过编程让计算机从数据中进行学习的科学(和艺术)。通用定义:机器学习是一个研究领域让计算机无须进行明确编程就具备学习能力。
2024-12-12 22:02:37
936
原创 1. 机器学习基本知识(4)——机器学习测试和验证
针对测试集不断调整超参数来训练模型,找到最佳超参数使得泛化误差最小,这样的模型是拟合该测试集的最佳模型,但是部署在实际环境中的性能将会降低,在新数据中的表现未必更好。好吧,由于最终模型是在完整的训练集上进行训练,因此在小得多的训练集上训练的候选模型并不理想。:如果在两个模型之间择优,可以同时训练这两个模型,使用测试集比较它们的泛化能力,从而能对两个模型进行评估。更具体地说,你可以在简化的训练集(即完整训练集减去验证集)上训练具有各种超参数的多个模型,然后选择在验证集上表现最佳的模型。
2024-12-11 20:37:24
1647
原创 1. 机器学习基本知识(3)——机器学习的主要挑战
机器学习是关于如何让机器更好地完成某些任务的理论,它从数据中学习而无须清晰地编写规则。机器学习系统有许多类型:有监督和无监督,批量的和在线的,基于实例的和基于模型的。在机器学习项目中,你从训练集中收集数据,然后将训练集提供给学习算法。如果该算法是基于模型的,它会调整一些参数以使模型拟合训练集(对训练集本身做出良好的预测),然后希望它也能够对新实例做出良好的预测。如果该算法是基于实例的,那么它会记住样例,并根据相似性度量将它们与学习过的实例进行比较,从而泛化到新实例。
2024-12-11 20:36:50
681
原创 1. 机器学习基本知识(2)——机器学习分类
在训练数据上有很好的性能是好的,但还不够,真正的目标是在新实例上表现良好。例如,可以使用聚类算法将相似的实例分组在一起,然后每个未标记的实例都可以用其集群中最常见的标签进行标记。将训练数据提供给另一个机器学习算法前,先进行降维算法减少训练数据的维度,能够加快算法运行、减少数据的空间占用(磁盘、内存),有时还能使得算法表现得更好。如果系统需要能够自动学习并且它的资源有限(例如,智能手机应用程序或火星上的漫游机器人),那么携带大量训练数据并占用大量资源来每天训练数小时是不太可能的。这称为基于模型的学习。
2024-12-10 15:12:15
974
原创 1. 机器学习基本知识(1)——机器学习场景与方法使用
工程化定义:一个计算机程序利用经验E来学习任务T,性能是P,如果针对任务T的性能P随着经验E不断增长,则称为机器学习。 ——汤姆·米切尔(Tom Mitchell),1997训练集:系统用来学习的样例训练实例(样本):每个训练样例模型:机器学习系统中学习和做出预测的部分例如,垃圾邮件过滤器就是一个机器学习程序,它可以根据给定的垃圾邮件(由用户标记)和普通电子邮件(非垃圾邮件,也称为ham)学习标记垃圾邮件。
2024-12-09 19:53:48
767
原创 Typora图片存储于腾讯云COS无法在md文件显示的问题及其解决方案
下面这个链接说明了搭建图床的方法,比较简单:https://cloud.tencent.com/document/product/436/74373如果搭建完毕,在typora验证上传选项会显示如下的成功界面:但是存在一个问题,即图片上传完毕,picgo提示已经完成上传后,但是md文件中并不能正常显示图片的问题,其中md文件显示如下:但是在picgo和腾讯云对象存储控制台都能够正常访问该图片,在浏览器访问该图片链接发现access denied的问题:原因在于typora上传的目标存储同没有设置公开读
2024-08-28 14:53:24
1380
1
原创 python数据可视化(4)——绘制折线图
折线图:显示随时间而变化的连续数据,展示在相等时间间隔下数据的趋势实例:数据来自kaggle网站的"E-commerce website Funnel analysis"地址为:https://www.kaggle.com/aerodinamicc/ecommerce-website-funnel-analysis网站很简单,有四个页面数据目标:绘制转化率的折线图,查看是否有异常情况。
2024-07-13 17:22:55
827
原创 什么是忆阻器?
定义:忆阻器是表示磁通与电荷关系的电路器件,被认为是继电阻、电容、电感之后的第四种基本电路元件。性质:忆阻器能够在外加电压或电流的作用下改变其电阻值,并且在断电后能够保持这个电阻值,即具有非易失性。
2024-07-02 13:12:39
2259
原创 情商提升(3)——什么是情绪
人,是靠自己的意识来定义自我存在的,而很多人都是缺失自我的,他们就会产生焦虑;他们这个时候就需要唤起某些情绪可以让他有感受,又通过这些感受感知到自我的存在,从而去缓解这种缺失自我带来的焦虑。情绪预警我们,要去审视自己的期望和客观世界,我们是不是在认知层面上有一定的扭曲?情绪可以控制,合理控制自己的情绪并不难,有时候没有控制住情绪,是因为发泄情绪的快感让人不想控制。情绪是预警信息,只有我们自身感受到负面情绪时,我们才能够去成长,才能够去思考和认知问题。
2024-05-19 18:33:27
412
原创 数据结构——7.3 树形查找
这些性质使得二叉排序树在进行查找、插入和删除操作时都能保持较高的效率。例如,在查找操作中,从根节点开始,如果待查找的值小于当前节点的值,则在左子树中继续查找;如果待查找的值大于当前节点的值,则在右子树中继续查找。这种查找方式的时间复杂度与树的高度相关,理想情况下可以达到O(log n)的复杂度。二叉排序树的插入操作也很高效。在插入新元素时,可以从根节点开始,比较新元素与当前节点的值,根据大小关系决定向左子树还是右子树进行插入,直到找到合适的位置。
2024-04-21 15:06:51
1254
原创 2023年图灵奖颁给普林斯顿数学教授 Avi Wigderson
图灵奖(Turing Award),全称A.M.图灵奖(ACM A.M Turing Award),是由美国计算机协会(ACM)于1966年设立的计算机奖项,旨在奖励对计算机事业作出重要贡献的个人。图灵奖的名称取自计算机科学的先驱艾伦·麦席森·图灵(Alan M. Turing),这个奖设立目的之一是纪念这位科学家。图灵奖的获奖标准是“在计算机科学和计算技术领域做出卓越贡献,体现了创新和高水平的技术成就”。获奖者的工作应具有广泛的影响力,并在学术界和工业界产生重要影响。
2024-04-21 14:56:02
1263
原创 数据结构——7.1&7.2 查找的基本概念、顺序查找和折半查找
分块查找的优点在于,由于只要求索引表是有序的,对块内节点没有排序要求,因此可以跳过一些不必要的块,从而提高查找效率。此外,虽然折半查找的查找效率很高,但其插入和删除操作的效率却相对较低,因为需要保持数组的有序性。使用折半查找的前提是对有序数组进行查找,其主要应用场景是查找数组中某个切实存在的数字,也可以稍微变化一些应用场景,如查找有序的字符数组中的某个字符,或者是查找某个数值所在的区间。折半查找的过程包括建立要查找的有序数组,定义起点、中间点、终点变量和要查找的常量,然后进入查找循环,编写查找逻辑。
2024-04-20 23:33:43
1599
原创 使用Vivado进行上板验证过程
Verilog的 TestBench其实是测试文件的意思。具体来说,Verilog测试基准(TestBench)是指用来测试一个Verilog实体的程序。它本身也由Verilog程序代码组成,用各种方法产生激励信号,通过元件例化语句以及端口映射将激励信号传送给被测试的Verilog设计实体,然后将输出信号波形写到文件中,或直接用波形浏览器观察输出波形。TestBench的主要目的是测试使用HDL设计的电路,对其进行仿真验证,以测试设计电路的功能、性能与设计预期是否相符。
2024-04-20 20:48:57
3722
原创 数据结构——6.4 图的应用
概念:在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间)称之为用边表示活动的网络,简称AOE网(Activity On Edge NetWork)最小生成树的算法基于贪心策略,每次都选取权值最小且满足条件的边,如果各边权值不同,则每次选择的新顶点也是唯一的,因此最小生成树也唯一。活动a_(i)的时间余量:d(i)=1(i)-e(i)——表示在不增加完成整个工程所需总时间的情况下,活动a_(i)可以拖延的时间。
2024-04-19 22:28:03
859
原创 verilog语法再解
学习视频来自b站:【【三天入门verilog速成】】up主:斑马先生泽布拉在Verilog语言中,(输入/输出)端口类型用于定义双向端口,这意味着这些端口既可以作为输入也可以作为输出。这在某些硬件设计中是非常有用的,尤其是当两个或多个设备需要共享一个物理端口时。具体来说,端口的用处包括:需要注意的是,虽然端口提供了双向通信的能力,但它们的使用也带来了一些复杂性。例如,你需要确保在任何时候只有一个设备在驱动端口(即,不能有两个设备同时尝试写入该端口),否则可能会导致冲突和数据损坏。此外,你还需要在Veril
2024-04-19 10:12:43
1490
原创 刷题日记——进制转换3(机试)
输入输出数字和字母,如何转换字母和数字的ascii转换高进制极易出现数值过大的情况,必须采用long long,我直接用unsigned long long。
2024-04-18 19:53:19
993
1
原创 刷题日记——约数的个数KY3
分析用例的0超过9个,需要使用long long,为了保险,我用的是unsigned long long判断约数有这样的规律:任何正整数a,如果存在约数对<m,n>,即a=mn,设m=min{m,n},n=max{m,n},即设m是约数对<m,n>中较小的一个,n是约数对<m,n>中较大的一个,那么当m最大时,一定有∣a−m∣|\sqrt{a}-m|∣a−m∣取得最小值,于是有:a\sqrt{a}a不为整数时,a的约数一定是成对出现的a\sqrt{a}a
2024-04-16 23:32:45
1151
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人