#1724 : 算式最大值

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

给定:

1)N个正整数A1, A2, ... AN;  

2)P个加号+和Q个减号-; (P+Q=N-1)  

3)K对括号()  

请你使用全部整数、加减号和括号,组成一个合法的算式(A1~AN在算式中的顺序随意),使得算式的结果最大。  

注意加减号只能作为二元运算符出现在算式中,不能作为正负号。  

括号可以出现在算式最左和最右,例如(((1+2)))是合法的。

例如对于样例数据,(2-1)+3或3+(2-1)等都是结果最大的算式。

输入

第一行包含4个整数,N,P, Q和K。  

第二行包含N个整数A1, A2, ... AN。  

2 ≤ N ≤ 100 P+Q+1=N 0 ≤ K ≤ 10  

1 ≤ Ai ≤ 1000

输出

最大算式结果

样例输入
3 1 1 1  
1 2 3
样例输出
4

这是一道思维题 只要有括号总能把若干个减号化成一个减号 我们只要减去数组里最小的即可;

举例:4,3,2,1 :2个减号 1个加号 一个括号 最大为:4-(1-2)+3  两个减号 一个加号 两个括号时:(4-(1-2))+3

三个减号 一个括号:4-(1-2-3) 两个括号时:(4-(1-2-3))

所以有括号时直接是排序 前n-1大的和减去最小的;

没括号是括号个数加1大的数减去剩下的 具体看代码:

#include<bits/stdc++.h>
#define maxn 150
using namespace std;
int n,p,q,k;
int a[maxn];
bool cmp(int x,int y){
	return x>y;
}
int main(){
//	freopen("input.txt","r",stdin);
	cin>>n>>p>>q>>k;
	for(int i=1;i<=n;i++) cin>>a[i];
	sort(a+1,a+1+n,cmp);
	int ans=0;
	if(k==0){
		for(int i=1;i<=n;i++){
			if(i<=p+1) ans+=a[i];
			else ans-=a[i];
		}
	}
	else{
		for(int i=1;i<n;i++) ans+=a[i];
		ans-=a[n];
	}
	cout<<ans<<endl;
	return 0;
}

阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页