网络流之费用流(最小费用最大流) 模板

网络流之最大流

Dinic+SPFA

#include<cstdio> 
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define N 5010
#define M 50010
int S, T;
int last[N], nxt[M * 2], to[M * 2], ls[M * 2], co[M * 2], len = 1;
int vi[N], dis[N];
int sum = 0, cost = 0;
queue<int> q;
void add(int x, int y, int w, int c) {
	to[++len] = y;
	nxt[len] = last[x];
	ls[len] = w;
	co[len] = c;
	last[x] = len;
}
int SPFA() {
	memset(dis, 127, sizeof(dis));
	memset(vi, 0, sizeof(vi));
	dis[S] = 0, vi[S] = 1;
	q.push(S);
	while(!q.empty()) {
		int x = q.front();
		q.pop();
		for(int i = last[x]; i; i = nxt[i]) {
			int y = to[i];
			if(ls[i] && dis[x] + co[i] < dis[y]) {
				dis[y] = dis[x] + co[i];
				if(!vi[y]) {
					vi[y] = 1;
					q.push(y);
				}
			}
		}
		vi[x] = 0;
	}
	return dis[T] < dis[0];
}
int dfs(int k, int flow) {
	if(k == T) return flow;
	int have = 0;
	vi[k] = 1;
	for(int i = last[k]; i; i = nxt[i]) {
		if(!vi[to[i]] && ls[i] && dis[k] + co[i] == dis[to[i]]) {
			int now = dfs(to[i], min(ls[i], flow - have));
			ls[i] -= now, ls[i ^ 1] += now, have += now;
			cost += now * co[i];
			if(have == flow) break;
		}
	}
	vi[k] = 0;
	return have;
}
int main() {
	int n, m, x, y, w, c, i;
	scanf("%d%d%d%d", &n, &m, &S, &T);
	for(i = 1; i <= m; i++) {
		scanf("%d%d%d%d", &x, &y, &w, &c);
		add(x, y, w, c), add(y, x, 0, -c);
	}
	while(SPFA()) {
		while(1) {
			int t = dfs(S, 2e9);
			if(t) sum += t; else break;
		}
	}
	printf("%d %d\n", sum, cost);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值