1002 过河卒

题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示, A 点 (0, 0) 、 BB 点 (n, m)( n, m 为不超过 20 的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

一行四个数据,分别表示 B点坐标和马的坐标。

输出格式:

一个数据,表示所有的路径条数。

输入输出样例





输入样例#1:
6 6 3 3
输出样例#1:
6

说明
结果可能很大!

题解: 对于边缘 dp[i][0]=dp[i1][0] d p [ i ] [ 0 ] = d p [ i − 1 ] [ 0 ] dp[0][i]=dp[0][i1] d p [ 0 ] [ i ] = d p [ 0 ] [ i − 1 ]
对于中间 dp[i][j]=dp[i1][j]+dp[i][j1]; d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] ;

#include <bits/stdc++.h>
using namespace std;
long long dp[40][40],flag[40][40];
int dx[]={1,1,-1,-1,2,2,-2,-2};
int dy[]={2,-2,2,-2,1,-1,1,-1};
int main()
{
    int n,m,x,y;
    scanf("%d%d%d%d",&n,&m,&x,&y);
    memset(flag,0, sizeof(flag));
    memset(dp,0, sizeof(dp));
    dp[0][0]=1;
    for (int i = 0; i <8 ; ++i) {
        int kx=x+dx[i];
        int ky=y+dy[i];
        if(kx>=0&&kx<=n&&ky>=0&&ky<=m&&!flag[kx][ky])
            flag[kx][ky]=1;
    }
    flag[x][y]=1;
    for (int i = 1; i <=n ; ++i) {
        if(flag[i][0]==0)dp[i][0]=dp[i-1][0];
        else
        break;
    }
    for (int i = 1; i <=m ; ++i) {
        if(flag[0][i]==0) dp[0][i]=dp[0][i-1];
        else break;
    }
    for (int i = 1; i <=n ; ++i) {
        for (int j = 1; j <=m ; ++j) {
            if(flag[i][j]==1) continue;
            dp[i][j]=dp[i-1][j]+dp[i][j-1];
        }
    }
    printf("%lld\n",dp[n][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值