spark相关知识

本文介绍了大数据的特点、处理流程和计算模式,重点讲解了Spark作为大数据处理框架的优势、特性、核心组件如Spark SQL和Spark Streaming的工作原理,以及Spark SQL的数据抽象DataFrame的使用。还通过综合实例展示了如何使用Spark SQL处理数据和Spark Streaming进行流计算。
摘要由CSDN通过智能技术生成

一:大数据及其关键技术

1.大数据的特点:数据量大,数据类型多,处理速度快,价值密度低。

2.大数据的基本处理流程:数据采集---存储管理---处理分析---结果呈现。由此得出大数据技术主要包括数据采集与预处理,数据存储与管理,数据处理与分析,数据可视化,数据安全和隐私保护等层面。

3.大数据的计算模式:

(1)批处理计算:针对大数据的批量计算。

(2)流计算:针对数据的实时计算。

(3)图计算:针对大规模图结构数据的计算。

(4)查询分析计算:大规模数据的存储管理和查询分析。

4.HDFS:具有很好的容错能力,采用主从结构模型,一个HDFS集群包括一个名称节点和若干个数据节点,名称节点并不参与数据的传输。

5.MapReduce是一种分布式并行编程模型。设计理念是“计算向数据靠拢”,即将数据节点和存储节点放在一起运行,从而减少节点间的数据移动开销。

HBase:高可靠,高性能,面向列,可伸缩的分布式数据库,可水平扩展。

Sqoop:主要用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值