X星球的考古学家发现了一批古代留下来的密码。
这些密码是由A、B、C、D 四种植物的种子串成的序列。
仔细分析发现,这些密码串当初应该是前后对称的(也就是我们说的镜像串)。
由于年代久远,其中许多种子脱落了,因而可能会失去镜像的特征。
你的任务是:
给定一个现在看到的密码串,计算一下从当初的状态,它要至少脱落多少个种子,才可能会变成现在的样子。
输入一行,表示现在看到的密码串(长度不大于1000)
要求输出一个正整数,表示至少脱落了多少个种子。
例如,输入:
ABCBA
则程序应该输出:
0
再例如,输入:
ABECDCBABC
则程序应该输出:
3
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
题解:
将此字符串颠倒过来,找它与原串的最长公共子序列,最后用原串的长度减去最长公共子序列的长度就是答案了。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10000;
char a[N];
char b[N];
int dp[N][N] = {0};
int main() {
int i, j, n;
cin >> a;
n = strlen(a);
for (i = 0; i < n; i++)
b[i] = a[n-1-i];
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++) {
if (a[i-1] == b[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
cout << dp[i][j] << " ";
}
cout << endl;
}
cout << n-dp[n][n] << endl;
return 0;
}