(JAVA)LeetCode 234 回文链表

题目描述

  • 请判断一个链表是否为回文链表。
    在这里插入图片描述

解法一:

  • 思路:遍历链表获得链表的长度,采用栈后进先出的思想,将链表的前半部分入栈,每个元素出栈判断是否与链表的元素(长度为奇数时需要向后遍历一个)相等。
  • 查看LeetCode题解:也可以使用双指针法,先将链表元素置于数组中,使用双指针逐个判断是否为回文,时间复杂度和空间复杂度如该解法相同。
class Solution {
    public boolean isPalindrome(ListNode head) {
        if(head==null||head.next==null)
            return true;
        Stack<Integer> stack = new Stack<>();
        ListNode q = head;
        int length = ListNodeLength(q);
        for(int i=0;i<length/2;i++){
            stack.push(head.val);
            head=head.next;
        }
        if(length%2==1){
            head=head.next;
        }
        while(head!=null){
            if(head.val!=stack.pop())
                return false;
            head=head.next;
        }
        return true;
    }
    private int ListNodeLength(ListNode q){
        int length=0;
        while(q!=null){
            q=q.next;
            length++;
        }
        return length;
    }
}
  • 时间复杂度:O(n) - 遍历两次链表
  • 空间复杂度:O(n) - 使用栈空间存储链表元素

解法二:快慢指针

在这里插入图片描述

  • 上图为LeetCode官网解释,感觉已经很清晰了,就直接扒过来了
class Solution {
    public boolean isPalindrome(ListNode head) {
        if(head==null||head.next==null)
            return true;
        // 快慢指针找到中间节点
        // 需要注意的是,当链表个数为偶数的时候,slow 指向第二个链表的开始。当链表个数为奇数的时候是,slow 指向最中间的位置。
        ListNode slow = head;
        ListNode fast = head;
        while(fast!=null&&fast.next!=null){
            slow = slow.next;
            fast = fast.next.next;
        }
        // 第二个链表倒置
        ListNode re = reverseList(slow);
        // 设置中间变量复原链表
        ListNode temp = re;
        // 前一半和后一半依次比较
        while(re!=null){
            if(re.val!=head.val)
                return false;
            re = re.next;
            head = head.next;
        }
        // 复原链表
        slow = reverseList(temp);
        return true;
    }
    private ListNode reverseList(ListNode head){
        if(head==null)
            return null;
        ListNode pre = null;
        while(head!=null){
            ListNode temp = head.next;
            head.next = pre;
            pre = head;
            head = temp; 
        }
        return pre;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
### 使用GIoU改进YOLOv3、YOLOv4或YOLOv5的方法及实现 #### GIoU简介 Generalized Intersection over Union (GIoU) 是一种扩展的交并比计算方式,它不仅考虑了预测框和真实框的重叠区域,还考虑了包围两个框的最小闭包区域。这种方法能够更好地指导模型学习边界框回归任务,从而提升目标检测精度[^1]。 #### 改进YOLO系列算法的具体方法 ##### 1. 替换原有的损失函数 在YOLOv3、YOLOv4或YOLOv5中,默认使用的损失函数通常是基于IoU(Intersection over Union)的。为了引入GIoU,需要替换原有损失函数的部分逻辑为GIoU损失函数。具体来说,在训练阶段,可以通过修改代码来实现这一功能: ```python import torch from torchvision.ops import generalized_box_iou_loss def compute_giou_loss(pred_boxes, target_boxes): """ 计算GIoU损失 :param pred_boxes: 预测框张量,形状为[N, 4] :param target_boxes: 真实框张量,形状为[N, 4] :return: GIoU损失值 """ loss = generalized_box_iou_loss(pred_boxes, target_boxes) return loss.mean() ``` 上述代码展示了如何利用PyTorch内置的功能`generalized_box_iou_loss`快速实现GIoU损失计算。 ##### 2. 修改配置文件 对于YOLOv5而言,通常会有一个`.yaml`格式的配置文件定义网络结构以及训练参数。如果要集成GIoU,则需调整该文件的相关部分以支持新的损失函数。例如,在`loss`字段下新增一项指向自定义GIoU损失函数的位置。 另外需要注意的是,当切换到更复杂的IoU变体如DIoU、CIoU时,可能还需要额外安装依赖库或者手动编码这些高级版本的距离度量公式[^2]。 ##### 3. 调整锚点生成策略 虽然这一步并非绝对要,但如果计划深入优化整个系统表现的话,重新设计适合新指标特性的先验候选区生成机制也可能带来一定增益效果。比如依据历史数据统计分析结果动态调整初始尺度设定等等[^3]。 #### 实现注意事项 - **硬件需求**: 如果打算大规模实验不同类型的IoUs及其组合形式对最终成果的影响程度对比测试等工作负载较大情况下建议采用GPU加速环境运行程序。 - **调试技巧**: 开始之前最好保留一份原始项目副本以便随时回滚更改;同时记录每次改动前后各项关键性能指标变化情况方便后续总结规律得出结论。 ```bash # 安装要的Python库 pip install torch torchvision opencv-python-headless matplotlib seaborn pandas scikit-image tensorboard pytorch-lightning tqdm ``` 以上命令可以帮助准备开发所需的软件工具链集合。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值