神经网络和反向传播算法学习

本文是《零基础入门深度学习》的学习总结,详细介绍了神经网络的矩阵表示、训练过程以及反向传播算法。通过实例解释了神经元的计算方法、神经网络各层的矩阵表示,并阐述了神经网络训练中的超参数概念。接着,讲解了反向传播算法,从输出层开始,反向计算隐藏层的误差项,进而更新权重。文章最后总结了神经网络各层的特点及其误差计算方法。
摘要由CSDN通过智能技术生成

本文是对《零基础入门深度学习》的简单归纳和学习总结,原文地址详见:https://www.zybuluo.com/hanbingtao/note/476663#an1

神经网络和反向传播算法

  神经元和感知器本质上是一样的,只不过感知器的激活函数是阶跃函数;神经元往往选用sigmoid函数或tanh函数,sigmoid函数图像如下:

                

  对于一个神经网络来说:输入向量的维度和输入层神经元个数相同,输出向量的维度和输出层神经元个数相同,为了举例说明神经网络的输出计算过程,为一个全连接网络每个单元编号如下:

  为了计算节点4的输出值a4,必须计算出所有上游节点的输出值,节点1、2、3是输入层的节点,所以,他们的输出值就是输入X向量本身,则a4的计算方法如下:

             a_4&=sigmoid(\vec{w}^T\centerdot\vec{x})=sigmoid(w_{41}x_1+w_{42}x_2+w_{43}x_3+w_{4b})

  w41、w42、w43分别为节点1、2、3到节点4连接的权重,在给权重wij编号时,我们把目标节点的编号j放在前面,把源节点的编号i放在后面。

  同理我们可以计算出输出层所有节点的输出值,我们就得到了输入\vec{x}=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}时对应的输出\vec{y}=\begin{bmatrix}y_1\\y_2\end{bmatrix}

神经网络的矩阵表示

  定义网络的输入向量x和隐藏层每个节点的权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值