本文是对《零基础入门深度学习》的简单归纳和学习总结,原文地址详见:https://www.zybuluo.com/hanbingtao/note/476663#an1
神经网络和反向传播算法
神经元和感知器本质上是一样的,只不过感知器的激活函数是阶跃函数;神经元往往选用sigmoid函数或tanh函数,sigmoid函数图像如下:
对于一个神经网络来说:输入向量的维度和输入层神经元个数相同,输出向量的维度和输出层神经元个数相同,为了举例说明神经网络的输出计算过程,为一个全连接网络每个单元编号如下:
为了计算节点4的输出值a4,必须计算出所有上游节点的输出值,节点1、2、3是输入层的节点,所以,他们的输出值就是输入X向量本身,则a4的计算方法如下:
w41、w42、w43分别为节点1、2、3到节点4连接的权重,在给权重wij编号时,我们把目标节点的编号j放在前面,把源节点的编号i放在后面。
同理我们可以计算出输出层所有节点的输出值,我们就得到了输入时对应的输出
神经网络的矩阵表示
定义网络的输入向量x和隐藏层每个节点的权重