Keras.Tokenizer:文本与序列预处理

Tokenizer类 成员变量 document_count 处理的文档数量 word_index 一个dict,保存所有word对应的编号id,从1开始 word_counts 一个dict,保存每个word在所有文档中出现的次数 word_docs 一个dict,保存每个word出现...

2019-03-28 15:23:38

阅读数 149

评论数 0

python深度学习6.1 处理文本数据

预训练的词嵌入 我们对解压后的文件(一个 .txt 文件)进行解析,构建一个将单词(字符串)映射为其向 量表示(数值向量)的索引。 代码清单 6-10 解析 GloVe 词嵌入文件 glove_dir = '/Users/fchollet/Downloads/glove.6B' embe...

2019-03-28 14:10:43

阅读数 60

评论数 0

鹰的重生

一则鹰的故事,让我们学会怎么样去克服困难,让自己再次的翱翔于天际。   孤鹰不褪羽,哪能得高飞,蛟龙不脱皮,何以上青天。 老鹰是世界上,寿命最长的鸟类,它的年龄可达七十岁,为什么鹰会有这么长的寿命?源之于在四十岁的时候必须做出艰难而重要的决定,因为当老鹰活到四十岁的时候,它的爪子开始老化,无法有效...

2019-03-28 10:22:30

阅读数 53

评论数 0

python深度学习-额外的知识点

数组拼接: np.concatenate partial_train_data = np.concatenate((train_data[:i*num_val_samples], train_data[(i+1)*num_val_samples:]), axis=0) 显示图片: from...

2019-03-22 14:37:58

阅读数 9

评论数 0

机器学习之离散型特征处理--独热码(one_hot_encoding)

自己写的独热码示例: from keras.datasets import reuters (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) import num...

2019-03-22 14:32:58

阅读数 61

评论数 0

keras使用总结(前三章)

简单的例子 network = models.Sequential() layer1 = layers.Dense(512, activation='relu', input_shape=(28*28,)) layer2 = layers.Dense(10, activation='softma...

2019-03-22 14:22:27

阅读数 28

评论数 0

数据预处理方法-特征标准化

普遍采用的最佳实践是对每 个特征做标准化,即对于输入数据的每个特征(输入数据矩阵中的列),减去特征平均值,再除 以标准差,这样得到的特征平均值为 0,标准差为 1。用 Numpy 可以很容易实现标准化。 from keras.datasets import boston_housing (...

2019-03-22 13:58:14

阅读数 21

评论数 0

关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

一、标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行。 将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。 实现时,有两种不同的方式: 使用skl...

2019-02-17 09:55:15

阅读数 31

评论数 0

后台运行jupyter nootbook

nohup jupyter notebook &

2019-02-13 11:13:30

阅读数 50

评论数 0

jupyter notebook远程访问不了的问题解决

conda  version 4.5.12 jupyter version 4.4.0   1 生成jupyter的config文件 $ jupyter notebook --generate-config 这时候会生成配置文件,在 ~/.jupyter/jupyter_notebook_...

2019-02-13 10:37:23

阅读数 86

评论数 0

提示
确定要删除当前文章?
取消 删除