##250:PenguinSledding
###题意:
给你点的大小范围,然后给你一些边,让你选出一些边的子集,不管子集中的点在坐标轴上怎么排列都不会有边交叉。。。
###分析:
以为题目中给定的点和边都特别少,我们考虑如何选,那么有两种选法,一种是三条边正好围成三角形,另一种是菊花图,这样就保证最长的链长度小于等于2。。。
###代码:
long long rode[60][60],edge[60],ans;
long long KSM(long long x,long long k)
{
long long ret=1,flag=x;
while(k)
{
if(k&1)ret*=flag;
flag*=flag;
k>>=1;
}
return ret;
}
long long PenguinSledding::countDesigns(int numCheckpoints, vector <int> checkpoint1, vector <int> checkpoint2) {
memset(rode,0,sizeof(rode));
memset(edge,0,sizeof(edge));
ans=0;
for(int i=0;i<checkpoint1.size();i++)
{
if(rode[checkpoint1[i]][checkpoint2[i]]==0)
{
rode[checkpoint1[i]][checkpoint2[i]]=rode[checkpoint2[i]][checkpoint1[i]]=1;
edge[checkpoint1[i]]++;
edge[checkpoint2[i]]++;
}
}
for(int i=1;i<=numCheckpoints;i++)
for(int j=i+1;j<=numCheckpoints;j++)
for(int k=j+1;k<=numCheckpoints;k++)
if(rode[i][j]&&rode[j][k]&&rode[k][i])
ans++;
for(int i=1;i<=numCheckpoints;i++)
ans+=KSM(2,edge[i])-1;
ans-=checkpoint1.size()-1;
return ans;
}
##500:PenguinEmperor
###题意:
有一个环,你刚开始在0好点,环上一共有n个点,每天你可以顺时针或逆时针走,在第i天你可以走i步,给出n和天数k,(n<350&&k<1e18),问k天后你在0号点的方案数。。。
###分析:
我们考虑在天数大于n后,每天走的步数相当于k%n步,然后这样子我们发现n天一个循环,然后每n天我们走路转移的状态是一样的,我们可以从第n天的状态,推出2n天的状态。。。然后这时我们就可以用快速幂来处理这个k了,复杂度是O(n^2*logk)。。。然后因为博主太菜了,打崩了好久。。。
###代码:
vector<LL> merge(vector<LL> a,vector<LL> b)
{
int len=a.size();
vector<LL> c(len,0);
for(int i=0;i<len;i++)
for(int j=0;j<len;j++)
(c[(i+j)%len]+=a[i]*b[j])%=mod;
return c;
}
vector<LL> pow(vector<LL> a,LL k)
{
if(k==0){a=vector<LL>(a.size(),0);a[0]=1;return a;}
if(k%2==0)return pow(merge(a,a),k/2);
else return merge(a,pow(a,k-1));
}
int PenguinEmperor::countJourneys(int numCities, long long daysPassed) {
vector<LL> x(numCities,0);
vector<LL> y(numCities,0);
x[0]=y[0]=1;
for(int i=1;i<numCities;i++)
{
vector<LL> move(numCities,0);
move[i]=move[numCities-i]=1;
x=merge(move,x);
if(i<=daysPassed%numCities)
y=merge(move,y);
}
vector<LL> ans=merge(y,pow(x,daysPassed/numCities));
return ans[0];
}