(有任何问题欢迎留言或私聊
题目:传送门
翻译过来就是说,给你一个无向连通图,有n个节点,m条边。有k种货物,每个节点存放一种货物。不过k种货物你只需要s种,问:依次输出以每个节点为起始点要得到s种货物所需要的最少步数。(每条边的权值为1).
思路:
当时想的是直接暴力从每个节点bfs,算出得到m种货物所需要的最短路径。但是写着写着就写残了。。。。
赛后发现了一种正确姿势。预先暴力bfs得出每个节点得到第j种货物的最短路径。保存到dis[][]中。dis[i][j]的意思就是从第i个点开始得到第j中货物所需要的最短路径。
初始化:dis[i][x]=0;//x是节点i本来就有的货物。
连边的方法是:有边的两个节点连无向边,然后把每种货物所处的节点存在vector里面。
得到dis数组之后,排个序选出最小的s个就行了。
具体看代码实现。
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 100000+5;
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;
const int mod = 1e9 + 7;
int n,m,s,k;
int ar[N],dis[N][105],vis[N];
vector<int>co[N],g[N];
void bfs(int type){//bfs得出每个节点到type种货物的最短路径
if(co[type].size()==0)return;
queue<int>Q;
while(!Q.empty())Q.pop();
memset(vis,0,sizeof(vis));
for(int i=0;i<co[type].size();++i){//把第type种货物所在的点加入队列
Q.push(co[type][i]);
vis[co[type][i]]=1;
dis[co[type][i]][type]=0;
}
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int i=0;i<g[u].size();++i){
int v=g[u][i];
if(vis[v])continue;
dis[v][type]=min(dis[u][type]+1,dis[v][type]);
vis[v]=1;
Q.push(v);
}
}
}
int main(){
scanf("%d%d%d%d",&n,&m,&s,&k);
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=n;++i){
scanf("%d",&ar[i]);
co[ar[i]].push_back(i);//每种货物所在的点存起来
dis[i][ar[i]]=0;
}
for(int i=0,u,v;i<m;++i){
scanf("%d%d",&u,&v);
g[u].push_back(v);g[v].push_back(u);//无向边
}
for(int i=1;i<=s;++i){
bfs(i);//按颜色bfs
}
for(int i=1;i<=n;++i){
sort(dis[i]+1,dis[i]+s+1);
int ans=0;
for(int j=1;j<=k;++j){
ans+=dis[i][j];
}
printf("%d ",ans );
}
return 0;
}