cf1512G - Short Task //on

cf1512G - Short Task

https://codeforces.com/contest/1512/problem/G

题意: 定义 d ( n ) = ∑ k ∣ n k d(n) = \sum_{k | n} k d(n)=knk, 对于每个询问c,输出 d ( n ) = c d(n) = c d(n)=c 的最小的n,

1e4次询问,c的范围1e7,必是预处理,考虑n两个平凡因子1和n的和已经大于n,预处理n的时候只需要处1e7,

可以根据题意直接nlogn求,对于每个数,对他的每个倍数都加上这个数

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int N = 1e7 + 10;

ll d[N], ans[N];

int main() {
    for (int i = 1; i < N; ++i) {
        for (int j = i; j < N; j += i) {
            d[j] += i;
        }
    }
    memset(ans, -1, sizeof ans);
    for (int i = 1; i < N; ++i) {
        if (d[i] < N && ans[d[i]] == -1) {
            ans[d[i]] = i;
        }
    }
    int T;
    cin >> T;
    while(T--) {
        ll c;
        cin >> c;
        cout << ans[c] << endl;
    }
    return 0;
}

起因是朋友刨根问底,(官方好像说有个线性的解但是没给出(是用积性函数的性质加上欧拉筛 (我可真没这精神(这你不反思下

然后问了队友,队友yyds(虽然好像还是nlogn(

首先 d ( n ) d(n) d(n) 是一个积性函数,即 d ( a × b ) = d ( a ) × d ( b ) d(a \times b) = d(a) \times d(b) d(a×b)=d(a)×d(b) ( a , b ) = 1 (a,b)=1 (a,b)=1

考虑用欧拉筛改一改,转移是 n是一个质数的幂次的时候他为一个等差数列的和(因为他的因数就只有 p 1 , p 2 , p 3 … p n u m p^1, p^2, p^3 \dots p^{num} p1,p2,p3pnum,根据定义 d ( n ) = p 1 + p 2 + ⋯ + p n u m d(n) = p^1 + p^2 + \dots + p^{num} d(n)=p1+p2++pnum,

例如 d ( 8 ) = 1 + 2 + 4 + 8 = d ( 4 ) ∗ 2 + 1 d(8) = 1 + 2+ 4+ 8 = d(4) *2 + 1 d(8)=1+2+4+8=d(4)2+1

合数就用最小质因子的次数乘以另一个数来求(此时这两部分互质(… 在枚举到一个数是质数的时候将它的幂次全部处理了以便这个情况下直接调用

也是nlogn(,,不知道怎么做到线性

upd : O(n)

  1. d ( n ) = ( 1 + p 1 1 + p 1 2 + … p 1 n u m 1 ) × ( 1 + p 2 1 + p 2 2 + … p 2 n u m 2 ) … ( 1 + p m 1 + p m 2 + … p m n u m m ) d(n) = (1 + p_1^1 + p_1^2 + \dots p_1^{num_1}) \times (1 + p_2^1 + p_2^2 + \dots p_2^{num_2}) \dots (1 + p_m^1 + p_m^2 + \dots p_m^{num_m}) d(n)=(1+p11+p12+p1num1)×(1+p21+p22+p2num2)(1+pm1+pm2+pmnumm)

  2. d ( a × b ) = d ( a ) × d ( b ) d(a \times b) = d(a) \times d(b) d(a×b)=d(a)×d(b)

欧拉筛,筛到一个数是质数的时候,d(i) = i + 1,

对每个数的倍数更新

用一个数组mul[] 辅助,mul[i] = i 最小的那个质因子的等比数列和,即当 d ( n ) = ( 1 + p 1 1 + p 1 2 + … p 1 n u m 1 ) × ( 1 + p 2 1 + p 2 2 + … p 2 n u m 2 ) … ( 1 + p m 1 + p m 2 + … p m n u m m ) d(n) = (1 + p_1^1 + p_1^2 + \dots p_1^{num_1}) \times (1 + p_2^1 + p_2^2 + \dots p_2^{num_2}) \dots (1 + p_m^1 + p_m^2 + \dots p_m^{num_m}) d(n)=(1+p11+p12+p1num1)×(1+p21+p22+p2num2)(1+pm1+pm2+pmnumm),
m u l ( i ) = 1 + p 1 1 + p 1 2 + … p 1 n u m 1 mul(i) = 1 + p_1^1 + p_1^2 + \dots p_1^{num_1} mul(i)=1+p11+p12+p1num1

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const ll N = 1e7 + 10;

ll primes[N], mul[N], d[N], ans[N], cnt = 0;
bool st[N];

void sieve() {
    cnt = 0;
    st[0] = st[1] = 1;
    mul[1] = 1, d[1] = 1;
    for (ll i = 2; i < N; ++i) {
        if (!st[i]) {
            primes[++cnt] = i;
            mul[i] = i + 1;
            d[i] = i + 1;
        }
        for (ll j = 1; primes[j] * i < N; ++j) {
            st[primes[j] * i] = 1;

            if (i % primes[j] == 0) {
                mul[i * primes[j]] = mul[i] * primes[j] + 1;
                d[i * primes[j]] = d[i] / mul[i] * mul[i * primes[j]];
                break;
            } else {
                mul[i * primes[j]] = primes[j] + 1;
                d[i * primes[j]] = d[i] * d[primes[j]];
            }
        }
    }
}

int main() {
    sieve();

    memset(ans, -1, sizeof ans);
    for (ll i = 1; i < N; ++i) {
        if (d[i] < N && ans[d[i]] == -1) {
            ans[d[i]] = i;
        }
    }
    ll T;
    cin >> T;
    while(T--) {
        ll c;
        cin >> c;
        cout << ans[c] << endl;
    }
    return 0;
}
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值