CF713G. Short Task——素数筛

传送门
题目大意:对d(n)=Σk(其中k|n),输入t组数据,每组一个c,求最小的n,满足d(n)=c
首先看一下数据范围n<=1e7,感觉就是O(n)算法,结果这也是考场上想递推但失败的原因
事实上,这可以用O(NlogN)算法。
这里考虑离线做法,预处理1至1e7的所有d(n),由素数性质有gcd(a,b)=1 => d(ab)=d(a)*d(b),所以对每个i,求d(i)时只需分离出他的一个质因子即可,所以可以考虑在埃氏筛的基础上得到每个数的第一个质因子(虽然欧拉筛也能做到),再依次枚举i,分离出第一个质因子部分的d(a),再与剩下部分d(b)相乘即可得到d(a,b)。剩下的就是标记一下以i为最小满足条件的d[i] (即c)了。

#include<cstdio>
#define rint register int
using namespace std;
const int mx=10000000;
int t,n,p;
int d[mx+5],s[mx+5],vis[mx+5];
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
	return x*f;
}
int main()
{
	for(rint i=2;i*i<=mx;++i){
		if(!d[i]){
			d[i]=i;
			for(rint j=i*i;j<=mx;j+=i){
				if(!d[j]) d[j]=i;
			}
		}
	}
	s[1]=1;vis[1]=1;
	for(rint i=2;i<=mx;++i){
		if(!d[i]) d[i]=i;
		if(d[i]==i){
			s[i]=i+1;
		}
		else{
			s[i]=1;p=i;
			while(p%d[i]==0){
				p/=d[i];
				s[i]=s[i]*d[i]+1;
			}
			s[i]*=s[p];
		}
		if(s[i]<=mx) if(!vis[s[i]]) vis[s[i]]=i;
	}
	t=read();
	for(rint i=1;i<=t;++i){
		n=read();
		if(vis[n]) printf("%d\n",vis[n]);
		else printf("-1\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hiroxzwang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值