传送门
题目大意:对d(n)=Σk(其中k|n),输入t组数据,每组一个c,求最小的n,满足d(n)=c
首先看一下数据范围n<=1e7,感觉就是O(n)算法,结果这也是考场上想递推但失败的原因
事实上,这可以用O(NlogN)算法。
这里考虑离线做法,预处理1至1e7的所有d(n),由素数性质有gcd(a,b)=1 => d(ab)=d(a)*d(b),所以对每个i,求d(i)时只需分离出他的一个质因子即可,所以可以考虑在埃氏筛的基础上得到每个数的第一个质因子(虽然欧拉筛也能做到),再依次枚举i,分离出第一个质因子部分的d(a),再与剩下部分d(b)相乘即可得到d(a,b)。剩下的就是标记一下以i为最小满足条件的d[i] (即c)了。
#include<cstdio>
#define rint register int
using namespace std;
const int mx=10000000;
int t,n,p;
int d[mx+5],s[mx+5],vis[mx+5];
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
int main()
{
for(rint i=2;i*i<=mx;++i){
if(!d[i]){
d[i]=i;
for(rint j=i*i;j<=mx;j+=i){
if(!d[j]) d[j]=i;
}
}
}
s[1]=1;vis[1]=1;
for(rint i=2;i<=mx;++i){
if(!d[i]) d[i]=i;
if(d[i]==i){
s[i]=i+1;
}
else{
s[i]=1;p=i;
while(p%d[i]==0){
p/=d[i];
s[i]=s[i]*d[i]+1;
}
s[i]*=s[p];
}
if(s[i]<=mx) if(!vis[s[i]]) vis[s[i]]=i;
}
t=read();
for(rint i=1;i<=t;++i){
n=read();
if(vis[n]) printf("%d\n",vis[n]);
else printf("-1\n");
}
return 0;
}