模型预测控制(MPC):无约束线性模型预测控制

本文介绍了模型预测控制(MPC)的基础理论,重点关注无约束线性模型。通过解析状态方程,展示了如何构建代价函数,并求解最优控制决策。在实践中,发现预测时域N的大小直接影响系统的稳定性。N较小可能导致系统发散,而更大的N则可能带来优化的复杂性问题。文章通过代码和不同N值的优化结果对比,讨论了MPC的稳定性与预测时域选择的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、理论基础:

考虑如下基于状态方程的线性系统:

在当前时刻k时,可以得到预测时域N内的输出如下:

进一步,可得出如下紧凑形式:

其中:

在有限时域N内定义如下代价函数:

其中:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值