使用MATLAB的BP神经网络工具箱
神经网络是一种模拟人脑神经元之间相互连接的计算模型。它可以用于解决各种问题,如模式识别、预测和优化。BP(Backpropagation)神经网络是一种常见且广泛使用的神经网络类型,它可以通过反向传播算法来训练和优化网络权重。在MATLAB中,我们可以使用BP神经网络工具箱来构建、训练和评估BP神经网络模型。
在本文中,我们将介绍如何使用MATLAB的BP神经网络工具箱来创建一个简单的分类器,以演示该工具箱的基本用法。
首先,我们需要准备我们的训练数据。假设我们有一个简单的二分类问题,其中包含两个输入特征和一个目标类别。我们将使用一个简单的示例数据集,该数据集包含一些训练样本。
% 输入特征
X = [0 0; 0 1;