神经网络里的“Hello World”

初识神经网络——利用keras进行手写数字识别

from keras import backend as K
import numpy as np
import tensorflow as tf
import matplotlib.image as mpimg
import cv2
from os.path import splitext
from os import listdir
from glob import glob
from PIL import Image
from keras.datasets import mnist
from keras import models
from keras import layers
from keras.utils import to_categorical

#加载数据集
(train_images,train_labels),(test_images,test_labels)=mnist.load_data();

#搭建网络
network=models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape=(28*28,)))
network.add(layers.Dense(10,activation='softmax'))

#配置网络
network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['acc'])

#数据预处理
train_images=train_images.reshape((60000,28*28))
train_images=train_images.astype('float32')/255
test_images=test_images.reshape((10000,28*28))
test_images=test_images.astype('float32')/255
train_labels=to_categorical(train_labels)
test_labels=to_categorical(test_labels)

#训练
network.fit(train_images,train_labels,epochs=5,batch_size=128)

#测试
test_loss,test_acc=network.evaluate(test_images,test_labels)

print('test_accuary:',test_acc)

控制台输出:
在这里插入图片描述
在训练集上的准确率为98.9%
在测试集上的准确率为97.8%
训练精度与测试精度之间的差距是过拟合造成的

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值