LightGBM参数的贝叶斯搜索

首先定义要优化的目标:

#定义要优化的目标
def LGB_L1_bayesian(num_leaves, learning_rate, feature_fraction,
                lambda_l1, lambda_l2, max_depth, bagging_fraction, bagging_freq):
    
    # LightGBM expects next three parameters need to be integer. So we make them integer
    num_leaves = int(num_leaves)
    max_depth = int(max_depth)
    bagging_freq = int(bagging_freq)
    
    assert type(num_leaves) == int
    assert type(max_depth) == int
    assert type(bagging_freq) == int
    
    param = {
        'num_leaves': num_leaves,
        'learning_rate': learning_rate,
        'bagging_fraction': bagging_fraction,
        'bagging_freq': bagging_freq,
        'feature_fraction': feature_fraction,
        'lambda_l1': lambda_l1,
        'lambda_l2': lambda_l2,
        'max_depth': max_depth,
        'save_binary': True, 
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值