数据分析算法
过河的靴子
这个作者很懒,什么都没留下…
展开
-
机器学习(一)-- K-近邻算法(KNN)
1、k-近邻算法原理简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类。- 优点:精度高、对异常值不敏感、无数据输入假定。- 缺点:时间复杂度高、空间复杂度高。- 适用数据范围:数值型和标称型。关于标称型和数值型监督学习一般使用两种类型的目标变量:标称型和数值型标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)数值型:数值型目标变量则可以从无限的数...原创 2018-06-30 15:33:58 · 195 阅读 · 0 评论 -
机器学习(六)--K均值算法(K-means)聚类
一、K-means算法原理 聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中。K-Means算法是一种聚类分析(cluster analysis)的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个...原创 2018-06-27 20:48:55 · 752 阅读 · 0 评论