P2522 [HAOI2011]Problem b(莫比乌斯反演)

题目链接:点击这里

题目大意:对于给出的 n n n 个询问,每次求有多少个数对 ( x , y ) (x,y) (x,y) ,满足 a ≤ x ≤ b a \le x \le b axb c ≤ y ≤ d c \le y \le d cyd,且 gcd ⁡ ( x , y ) = k \gcd(x,y) = k gcd(x,y)=k

题目分析:
此题目所求式子为:
∑ i = a b ∑ j = c d [ gcd ⁡ ( i , j ) = k ] \sum_{i=a}^b\sum_{j=c}^d[\gcd(i,j)=k] i=abj=cd[gcd(i,j)=k]
我们继续套路的设:
f ( d ) = ∑ i = 1 N ∑ j = 1 M [ gcd ⁡ ( i , j ) = d ] f(d)=\sum_{i=1}^N\sum_{j=1}^M[\gcd(i,j)=d] f(d)=i=1Nj=1M[gcd(i,j)=d]
F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum_{n|d}f(d) F(n)=ndf(d)
= ⌊ N n ⌋ ⌊ M n ⌋ =\lfloor \frac Nn \rfloor \lfloor \frac Mn \rfloor =nNnM
由莫比乌斯反演可得:
f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) f(n)=\sum_{n|d}μ(\frac dn)F(d) f(n)=ndμ(nd)F(d)
重新选取枚举项,令 x = d n x=\frac dn x=nd ,有:
f ( n ) = ∑ x = 1 m i n ( N , M ) μ ( x ) F ( n x ) f(n)=\sum_{x=1}^{min(N,M)}μ(x)F(nx) f(n)=x=1min(N,M)μ(x)F(nx)
= ∑ x = 1 m i n ( N , M ) μ ( x ) ⌊ N n x ⌋ ⌊ M n x ⌋ =\sum_{x=1}^{min(N,M)}μ(x)\lfloor \frac N {nx} \rfloor \lfloor \frac M {nx} \rfloor =x=1min(N,M)μ(x)nxNnxM
此时我们对 μ ( x ) μ(x) μ(x) 求个前缀和就可以在 O ( n ) O(\sqrt n) O(n ) 内求出 ∑ i = 1 N ∑ j = 1 M [ gcd ⁡ ( i , j ) = k ] \sum_{i=1}^N\sum_{j=1}^M[\gcd(i,j)=k] i=1Nj=1M[gcd(i,j)=k]
题目所求式子可以通过简单容斥求解:
g ( n , m ) = ∑ i = 1 N ∑ j = 1 M [ gcd ⁡ ( i , j ) = k ] g(n,m)=\sum_{i=1}^N\sum_{j=1}^M[\gcd(i,j)=k] g(n,m)=i=1Nj=1M[gcd(i,j)=k]
a n s = g ( b , d ) − g ( a − 1 , d ) − g ( b , c − 1 ) + g ( a − 1 , c − 1 ) ans=g(b,d)-g(a-1,d)-g(b,c-1)+g(a-1,c-1) ans=g(b,d)g(a1,d)g(b,c1)+g(a1,c1)
时间复杂度为 O ( t n ) O(t\sqrt n) O(tn )

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
int read()
{
	int res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 1e5+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
int cnt,pri[maxn],mu[maxn],sum[maxn];
bool vis[maxn];
void get_mu()
{
	mu[1] = vis[1] = 1;
	for(int i = 2;i < maxn;i++)
	{
		if(!vis[i])
		{
			mu[i] = -1;
			pri[++cnt] = i;
		}
		for(int j = 1;j <= cnt && i*pri[j] < maxn;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) break;
			else mu[i*pri[j]] -= mu[i];
		}
	}
	for(int i = 1;i < maxn;i++)
		sum[i] = sum[i-1]+mu[i];
} 
ll calc(int n,int m,int d)
{
	ll res = 0;
	for(int l = 1,r;l <= min(n,m);l = r+1)
	{
		r = min(n/(n/l),m/(m/l));
		res += 1ll*(sum[r]-sum[l-1])*(n/(d*l))*(m/(d*l));
	}
	return res;
}
int main()
{
	get_mu();
	int n = read();
	while(n--)
	{
		int a = read(),b = read(),c = read(),d = read(),k = read();
		ll ans = calc(b,d,k)-calc(a-1,d,k)-calc(b,c-1,k)+calc(a-1,c-1,k);
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值