题目链接:点击这里
题目大意:
给定一个长度为
n
n
n 的序列
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an ,对序列进行单点修改、区间取余和区间查询
题目分析:
有一个很经典的结论:
a
m
o
d
p
<
a
2
(
a
>
p
)
a \mod p<\frac a2(a>p)
amodp<2a(a>p)
证明:
若
p
≤
a
2
p\le \frac a2
p≤2a ,
a
m
o
d
p
<
a
2
a \mod p< \frac a2
amodp<2a 显然成立
若
p
>
a
2
p>\frac a2
p>2a ,有
2
p
>
a
2p>a
2p>a 此时
a
m
o
d
p
=
a
−
p
<
a
2
a\mod p=a-p<\frac a2
amodp=a−p<2a
综上
a
m
o
d
p
<
a
2
(
a
>
p
)
a \mod p<\frac a2(a>p)
amodp<2a(a>p)
有了这个结论后我们就很容易得出一个数
x
x
x 最多被取余
l
o
g
x
logx
logx 次,因此我们可以仿照区间开方的思路对于维护区间最大值,然后在最大值小于
p
p
p 时再暴力取余即可
具体细节见代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<queue>
#define ll long long
#define inf 0x3f3f3f3f
#define Inf 0x3f3f3f3f3f3f3f3f
#define int ll
using namespace std;
ll read()
{
ll res = 0,flag = 1;
char ch = getchar();
while(ch<'0' || ch>'9')
{
if(ch == '-') flag = -1;
ch = getchar();
}
while(ch>='0' && ch<='9')
{
res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
ch = getchar();
}
return res*flag;
}
const int maxn = 5e5+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
struct sgt{
int val,maxx;
}a[maxn<<2];
int n,m,sco[maxn];
char s[3];
void pushup(int root)
{
a[root].val = a[root<<1].val+a[root<<1|1].val;
a[root].maxx = max(a[root<<1].maxx,a[root<<1|1].maxx);
}
void build(int root,int l,int r)
{
if(l == r)
{
a[root].val = a[root].maxx = read();
return ;
}
int mid = l+r>>1;
build(root<<1,l,mid);
build(root<<1|1,mid+1,r);
pushup(root);
}
void updat(int root,int l,int r,int pos,int val)
{
if(l == r)
{
a[root].val = a[root].maxx = val;
return ;
}
int mid = l+r>>1;
if(pos <= mid) updat(root<<1,l,mid,pos,val);
else updat(root<<1|1,mid+1,r,pos,val);
pushup(root);
}
void updat_mod(int root,int l,int r,int ql,int qr,int val)
{
if(l>qr || r<ql || a[root].maxx < val) return ;
if(l == r)
{
a[root].val = a[root].val%val;
a[root].maxx = a[root].maxx%val;
return ;
}
int mid = l+r>>1;
updat_mod(root<<1,l,mid,ql,qr,val);
updat_mod(root<<1|1,mid+1,r,ql,qr,val);
pushup(root);
}
int query(int root,int l,int r,int ql,int qr)
{
if(l>qr || r<ql) return 0;
if(l>=ql && r<=qr) return a[root].val;
int mid = l+r>>1;
return query(root<<1,l,mid,ql,qr)+query(root<<1|1,mid+1,r,ql,qr);
}
signed main()
{
n = read(),m = read();
build(1,1,n);
while(m--)
{
int opt = read();
if(opt == 1)
{
int x = read(),y = read();
printf("%lld\n",query(1,1,n,x,y));
}
else if(opt == 2)
{
int x = read(),y = read(),val = read();
updat_mod(1,1,n,x,y,val);
}
else if(opt == 3)
{
int x = read(),y = read();
updat(1,1,n,x,y);
}
}
return 0;
}