CodeForces -438D The Child and Sequence (线段树区间取余)

题目链接:点击这里

题目大意:
给定一个长度为 n n n 的序列 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an ,对序列进行单点修改、区间取余和区间查询

题目分析:
有一个很经典的结论:
a m o d    p < a 2 ( a > p ) a \mod p<\frac a2(a>p) amodp<2a(a>p)
证明:
p ≤ a 2 p\le \frac a2 p2a a m o d    p < a 2 a \mod p< \frac a2 amodp<2a 显然成立
p > a 2 p>\frac a2 p>2a ,有 2 p > a 2p>a 2p>a 此时 a m o d    p = a − p < a 2 a\mod p=a-p<\frac a2 amodp=ap<2a
综上 a m o d    p < a 2 ( a > p ) a \mod p<\frac a2(a>p) amodp<2a(a>p)
有了这个结论后我们就很容易得出一个数 x x x 最多被取余 l o g x logx logx 次,因此我们可以仿照区间开方的思路对于维护区间最大值,然后在最大值小于 p p p 时再暴力取余即可

具体细节见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<queue>
#define ll long long
#define inf 0x3f3f3f3f
#define Inf 0x3f3f3f3f3f3f3f3f
#define int ll
using namespace std;
ll read()
{
	ll res = 0,flag = 1;
	char ch = getchar();
	while(ch<'0' || ch>'9')
	{
		if(ch == '-') flag = -1;
		ch = getchar();
	}
	while(ch>='0' && ch<='9')
	{
		res = (res<<3)+(res<<1)+(ch^48);//res*10+ch-'0';
		ch = getchar();
	}
	return res*flag;
}
const int maxn = 5e5+5;
const int mod = 1e9+7;
const double pi = acos(-1);
const double eps = 1e-8;
struct sgt{
	int val,maxx;
}a[maxn<<2];
int n,m,sco[maxn];
char s[3];
void pushup(int root)
{
	a[root].val = a[root<<1].val+a[root<<1|1].val;
	a[root].maxx = max(a[root<<1].maxx,a[root<<1|1].maxx);
}
void build(int root,int l,int r)
{
	if(l == r)
	{
		a[root].val = a[root].maxx = read();
		return ;
	}
	int mid = l+r>>1;
	build(root<<1,l,mid);
	build(root<<1|1,mid+1,r);
	pushup(root);
}
void updat(int root,int l,int r,int pos,int val)
{
	if(l == r)
	{
		a[root].val = a[root].maxx = val;
		return ;
	}
	int mid = l+r>>1;
	if(pos <= mid) updat(root<<1,l,mid,pos,val);
	else updat(root<<1|1,mid+1,r,pos,val);
	pushup(root);
}
void updat_mod(int root,int l,int r,int ql,int qr,int val)
{
	if(l>qr || r<ql || a[root].maxx < val) return ;
	if(l == r)
	{
		a[root].val = a[root].val%val;
		a[root].maxx = a[root].maxx%val;
		return ;
	}
	int mid = l+r>>1;
	updat_mod(root<<1,l,mid,ql,qr,val);
	updat_mod(root<<1|1,mid+1,r,ql,qr,val);
	pushup(root);
}
int query(int root,int l,int r,int ql,int qr)
{
	if(l>qr || r<ql) return 0;
	if(l>=ql && r<=qr) return a[root].val;
	int mid = l+r>>1;
	return query(root<<1,l,mid,ql,qr)+query(root<<1|1,mid+1,r,ql,qr);
}
signed main()
{
	n = read(),m = read();
	build(1,1,n);
	while(m--)
	{
		int opt = read();
		if(opt == 1) 
		{
			int x = read(),y = read();
			printf("%lld\n",query(1,1,n,x,y));
		}
		else if(opt == 2)
		{
			int x = read(),y = read(),val = read();
			updat_mod(1,1,n,x,y,val);
		}
		else if(opt == 3)
		{
			int x = read(),y = read();
			updat(1,1,n,x,y);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值