题目链接:点击这里
题目大意:
初始有一个细胞体积为
1
1
1 ,每天分为白天和夜晚,白天可以选择任意个细胞进行分裂,每个细胞会分裂为两个,夜晚每个细胞体积会加
1
1
1 ,求最少需要几天使所有细胞的体积和为
n
n
n ,若存在则输出每天需要分裂几个细胞,不存在则输出
−
1
-1
−1 。
题目分析:
首先可以确定不存在无解的情况,因为细胞如果每天都不分裂,那么其
n
n
n 天后体积也会达到
n
n
n 。
接下来考虑如何让细胞总体积快速变大,不难发现,只需要让每一细胞在白天都分裂体积就会总倍增,如果一直倍增增速显然是最快的,但是可能到不了
n
n
n ,我们令
s
u
m
=
1
+
2
+
2
2
+
.
.
.
+
2
k
≤
n
sum=1+2+2^2+...+2^k\le n
sum=1+2+22+...+2k≤n ,假设
2
i
≤
n
−
s
u
m
≤
2
i
+
1
2^i\le n-sum\le 2^{i+1}
2i≤n−sum≤2i+1 则只需要构造每天增加的体积序列为
1
,
2
,
2
2
,
.
.
.
2
i
,
n
−
s
u
m
,
2
i
+
1
,
.
.
.
,
2
k
1,2,2^2,...2^i,n-sum,2^{i+1},...,2^k
1,2,22,...2i,n−sum,2i+1,...,2k 即为最优答案,他在保证了增速最快的前提下还能到达
n
n
n ,此时题目所求答案即为此序列的差分数组
具体细节见代码:
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int t,n;
vector<int>v;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);v.clear();
for(int i = 1;i <= n;i *= 2)
{
n -= i;
v.push_back(i);
}
if(n) v.push_back(n);
sort(v.begin(),v.end());
cout<<v.size()-1<<endl;
for(int i = 1;i < v.size();i++) printf("%d ",v[i]-v[i-1]);
puts("");
}
return 0;
}